Окей, мозг, где я? Как работает наша внутренняя система навигации, зачем нужны воспоминания и почему иногда они стираются Эйкесет Унни

«Удивительное искусство»

Сплошная, бесконечная белизна. Лейтенант российской армии Фердинанд Врангель и участники его экспедиции испытывали сильную резь и жжение в глазах из-за яркого света, отражавшегося от припорошенного снегом льда, сковавшего море. Стоял апрель 1821 года. Чуть больше недели назад экспедиция покинула материк и устремилась на север по замерзшему морю. Караван состоял из 22 нарт, в которые было запряжено в общей сложности 240 собак. В первые дни еще виднелись Барановы Камни на берегу, но постепенно они сравнялись с линией горизонта, и после этого мир вокруг экспедиционной группы превратился в бесконечную ледяную плоскость, нарушаемую лишь полыньями и торосами (обломками льда).

Врангель руководил одной из двух экспедиций в Сибирь, направленных императором Александром Павловичем для заполнения белых пятен на карте к северу от Российской империи. В задачи экспедиции входило составление подробных карт северо-восточного побережья Сибири. Кроме того, они должны были узнать, действительно ли к северу от Сибири в арктических водах есть неоткрытые земли, как утверждали некоторые другие путешественники.

Для Врангеля и его спутников умение ориентироваться на местности и отыскать дорогу назад через замерзшее море, не имея практически никаких навигационных ориентиров, было вопросом жизни и смерти.

Поскольку полыньи и крупные торосы то и дело заставляли экспедицию сходить с намеченного маршрута, Врангелю постоянно приходилось прокладывать новый курс. Помогали ему в этом передовые навигационные приборы того времени: два хронометра, позволявшие более или менее точно узнавать время, а также один секундомер, один секстант, один искусственный горизонт, три азимутных компаса, два телескопа и одна измерительная лента. Каждый день в конце перехода Врангель сопоставлял показания всех приборов, чтобы рассчитать точное положение экспедиционной группы. Удивительно было другое: многие из его спутников гораздо лучше него знали, где они находятся после целого дня пути по льду, причем без всяких навигационных приборов. Им словно помогало «удивительное искусство сохранять и помнить данный курс», писал лейтенант в своих заметках.

Особенно поразил Врангеля опытный проводник и нартовщик, казацкий сотник Татаринов:

«Среди самых спутанных гряд торосов, объезжая огромные горы, сворачивая то направо, то налево, он всегда так располагал дорогой, что изгибы взаимно уничтожались, и каким-то инстинктом находил он всегда настоящий курс. С моей стороны, я следовал по компасу за извилинами дороги, и не помню случая, когда мне нужно было поправлять моего нартовщика. Расстояния одного места от другого считали мы прямыми линиями и поверяли обсервационными широтами»[1].

Оказавшись в ловушке тающих льдов и стремительно увеличивающихся полыней, экспедиция Врангеля вынуждена была повернуть назад к материку. Они не нашли к северу от Сибири большой суши, но обнаружили несколько островов и заполнили белые пятна на карте. Пару десятилетий спустя рассказ о полном тягот и невзгод путешествии Врангеля вышел на английском языке и попался на глаза знаменитому автору теории эволюции Чарльзу Дарвину. Тот обратил внимание на упоминание о невероятном топографическом чутье нартовщиков и задумался, как такое вообще возможно.

Дарвин и сам участвовал в большой экспедиции на судне «Бигль» в 1831–1836 годах. Он прекрасно понимал, как трудно следить за курсом в условиях, сопровождавших вылазку Врангеля по льду. Ни компаса, ни Полярной звезды было недостаточно, чтобы определить свое положение в открытом море, когда приходится постоянно менять курс. Должно быть, нартовщики руководствовались некими подсознательными вычислениями скорости, направления и времени. Впрочем, Дарвин не считал, что у нартовщиков было какое-то особое качество, отсутствующее у других людей. Судя по всему, все люди в той или иной степени могут ориентироваться на местности, просто нартовщики довели эту способность до совершенства. С позиции эволюционной биологии для этой способности были важны зрение, а также информация о движении мышц.

Чарльз Дарвин сформулировал предположение, которое оставалось недоказанным долгое время после его смерти: в мозге существует отдельная зона, отвечающая за чувство направления?[2]

Лишь 130 лет спустя эта гипотеза была доказана исследовательской четой из небольшого норвежского университета.

Харэйдский астрономический клуб

Одним осенним днем 1982 года три человека случайно встретились на улице в Осло. 32 года спустя двое из них несколько недель не сходили со страниц газет, став лауреатами Нобелевской премии по медицине – первыми в истории Норвегии.

Мэй-Бритт Андреассен, 19 лет, только что закончила свою смену в кофейне и как раз направлялась в сторону центра, когда заметила на улице двух старых знакомых. Это были Эйвинн Странн, с которым она училась в гимназии в Ульстейнвике, и Эдвард Мозер, с которым они вместе ходили на химию. Эдвард упомянул, что весной планирует приступить к учебе в Осло, и Мэй-Бритт, которая уже полтора года жила и училась здесь, предложила провести ему экскурсию, если понадобится. Она помнила, каково ей было самой оказаться одной в незнакомом городе, и искренне хотела помочь ему освоиться в университете и в столице.

Мэй-Бритт не очень близко знала Эдварда, но по школьным временам помнила, что он немного застенчив. Тем сильнее она удивилась, когда, приехав в Осло несколько месяцев спустя, он сам вышел на связь и попросил провести ему экскурсию по университетскому городку в Блиндерне.

Оба выросли в округе Суннмёре в Западной Норвегии, в 20 км друг от друга. Она – на ферме в Фоснавоге, он – в небольшом городке под названием Харэйд, расположенном на острове неподалеку. Мэй-Бритт была младшим ребенком в семье, а Эдвард родился старшим в семье, известной в округе своей необычной историей. Его родители, немцы, приехали в Норвегию в 1950-х, когда отцу предложили работу в органной мастерской на острове Хамарсёйа.

Оба пошли в школу в августе 1969 года, всего несколько недель спустя после того, как Нил Армстронг и Базз Олдрин совершили первую в истории человечества посадку на Луну в составе миссии «Аполлон 11». И хотя с точки зрения норвежских первоклашек до США было примерно как до Луны, все они знали, что теперь оставить свой след на поверхности другой планеты стало возможно. Как и многие другие дети времен лунной программы, Эдвард Мозер увлекался астрономией и космическими кораблями. Вместе со своим одноклассником Эйстейном Ортеном он основал Харэйдский астрономический клуб, члены которого обменивались информацией о Солнечной системе и расстояниях между планетами. Впрочем, Эдварда интересовало множество других вещей: он коллекционировал камни и проводил в ванной химические опыты.

Мэй-Бритт, в свою очередь, была полна кипучей энергии и перепробовала все занятия, доступные в округе. Как и многие дети, выросшие в так называемом Библейском поясе[3], она посещала воскресную школу. Позднее она увлеклась плаванием, горными походами, вступила в клуб скаутов и училась играть на гитаре. На улице ее часто можно было увидеть в компании Бамсе – большой норвежской овчарки, которую ей подарили родители.

В первые месяцы жизни Эдварда в Осло они стали близкими друзьями – в том числе и потому, что оказались в похожей ситуации: оба находились в поиске дела всей жизни.

Первой дисциплиной, выбранной Эдвардом в университете, стала неорганическая химия, но он довольно быстро понял, что этот предмет ему не по душе. Он планировал попробовать другие естественные науки, но тут ему на глаза попалась книга, повернувшая мысли в другое направление. На Эдварда произвела огромное впечатление работа Зигмунда Фрейда «Толкование сновидений», в которой ученый описывает свои и чужие сны и утверждает, что их содержание – ключ к пониманию человеческой психики.

«Я хотел разобраться, почему люди поступают так, как поступают, и почему им снится то, что снится, был ли Фрейд прав, утверждая, что сны являются ключом к пониманию работы человеческого сознания. Именно поэтому я увлекся психологией», – говорит Эдвард Мозер.

Мэй-Бритт лишь покачала головой, узнав, что Эдвард принимает всерьез настолько ненаучные гипотезы, но она разделяла его интерес к психологии. Еще с детских лет, проведенных в тесном контакте с природой и животными, она задавалась вопросами о том, каковы основы поведения людей и животных.

Итак, осенью 1983 года оба оказались в лекционном зале на курсе психологии. Довольно быстро они поняли, что сильнее всего их привлекает одна конкретная область этой науки – биологическая психология, в рамках которой ученые использовали естественнонаучный инструментарий, чтобы обнаружить биологическую основу поведения людей и животных. Обоих озарило: именно этим они хотят заниматься в будущем.

Руководитель курса Карл Эрик Греннесс дал им специальное издание журнала Scientific American – книгу «Мозг», которая познакомила их с крупнейшими достижениями биологической психологии и нейробиологии последних лет[4]. За предшествующие несколько десятилетий в психологии под влиянием новых открытий в нейронауке, биологии и химии произошла настоящая революция. Они осознали, что поступили в университет в тот момент, когда психологи начали понимать, каким образом мозг обучается и как это проявляется в поведенческих реакциях человека и животных. Ученые выяснили, что обучение заключается в выстраивании связей между нейронами, которые «общаются» с помощью синапсов. А память основана на повторной активации тех же самых нейронов, что были задействованы в обучении. В полученной от лектора книге они прочли о пионерских исследованиях американского ученого Эрика Кандела, проводившего эксперименты с нервной системой аплизии. Несмотря на то, что строение нервной системы этого моллюска крайне примитивно, он способен к обучению. Нейроны этого моллюска одни из самых крупных в животном мире и достигают в диаметре 1 мм. Их можно увидеть невооруженным глазом, благодаря чему моллюск представляет собой идеальный объект исследования[5].

У аплизии имеется один естественный рефлекс: в случае опасности она втягивает жабры. Кандел взял этот рефлекс за основу для своих экспериментов. Он научил аплизию отличать безопасное прикосновение (привычное) от прикосновения, которое должно было вызывать у нее обостренную реакцию (сенсибилизация). Последнее всегда сопровождалось ударом электрического тока. Кандел выяснил, что различные формы обучения – привыкание, или габитуация, и сенсибилизация – оставляют различный след на нейронах. Нейроны, которые обучались посредством сенсибилизации, отращивали дополнительные синапсы для втягивания жабр по сравнению с нейронами, привыкшими к безопасным прикосновениям. Это стало первым доказательством того, что процесс обучения отражается на физиологическом уровне в нервной системе[6]!

Эдвард Мозер и Мэй-Бритт Андреассен были страшно разочарованы, узнав, что в Норвегии нет научных лабораторий, ведущих исследования в области биологической психологии. Однако вскоре они обнаружили нечто куда более интересное: оказалось, что в Университете Осло работает группа ведущих мировых нейробиологов, изучающих ключевую для памяти и обучения структуру головного мозга – гиппокамп.

Гиппокамп

Уже первые исследователи мозга обратили внимание на структуру под названием гиппокамп, которая располагается в височной доле, в нескольких сантиметрах вглубь от височной кости. Во-первых, бросается в глаза форма этой структуры – гиппокамп напоминает морского конька, на латыни Hippocampus. Впервые это название употребил итальянский анатом Джулио Аранци в 1564 году. А еще раньше эту часть мозга называли cornu ammonis, то есть Аммонов рог – по имени египетского бога Аммона[7], которого изображали с изогнутыми рогами. Интерес к гиппокампу подогревался тем, что его находили в мозге всех млекопитающих – от самых примитивных до наиболее высокоразвитых. Это говорило о том, что гиппокамп выполняет какую-то очень важную, ключевую функцию.

Когда в конце XIX века ученые начали проводить эксперименты с окрашиванием тонких срезов мозга, то заметили, что нейроны и синапсы гиппокампа очень упорядочены и, можно сказать, красивы. Сначала идет слой клеток определенного типа, чьи отростки тянутся к еще одному слою клеток, а потом и к третьему. Эти три слоя получили название dentate gyrus, то есть зубчатая извилина, содержащая поля CA1 и CA3. Аббревиатура CA расшифровывается как cornu ammonis – так первоначально называли весь гиппокамп. Окрашивание нейронов показало, что гиппокамп имеет очень отчетливую структуру и обладает обширными связями с другими отделами мозга. Очевидно, это очень важно, но что именно это означало?

В 1953 году у ученых появились первые догадки.

В августе того же года один молодой мужчина оказался на операционном столе в американской клинике. Звали его Генри Густав Молисон, и нейробиологи всего мира знают его как «пациента HM»[8]. В возрасте 10 лет он начал страдать от эпилептических припадков. Болезнь могла спровоцировать незначительная травма головы, полученная им ранее при столкновении с велосипедистом, в результате которого он на пять минут потерял сознание. Но с тем же успехом недуг мог оказаться наследственным: некоторые родственники по отцовской линии тоже страдали от эпилепсии.

Когда Генри исполнилось 16 лет, у него стали случаться сильные припадки. Он мог упасть в обморок, обмочиться, прикусить язык, страдал от сильных судорог в руках и ногах. Несмотря на это, ему удалось окончить школу и устроиться на работу в автомастерской, а также на фабрику по изготовлению печатных машинок. Чтобы смягчить припадки, Генри принимал большие дозы противосудорожных препаратов, но вскоре пришлось бросить работу, а к 27 годам ситуация усугубилась настолько, что он и его родители были готовы на хирургическое вмешательство.

Многим пациентам с эпилепсией помогало удаление небольших областей мозга, в которых локализовались очаги эпилепсии. В случае Генри Молисона, однако, врачам не удалось достаточно точно установить область, подлежащую резекции, даже после целого ряда тестов с закрепленными на голове электродами. Поэтому нейрохирург Уильям Бикер Сковилл предложил экспериментальную операцию, которая ранее применялась только у пациентов, страдавших серьезными психическими заболеваниями, к примеру шизофренией. Он предложил удалить фрагменты медиальных височных отделов обоих полушарий мозга. У значительной части пациентов очаги эпилепсии локализовались именно там, поэтому предполагалось, что операция даст Генри шанс на лучшую жизнь.

Конечно, в результате пациент лишался обоих гиппокампов, но на тот момент не было оснований предполагать, что без них ему не обойтись. О функциях гиппокампа было известно еще очень мало. Один британский исследователь описал всю сумму знаний о гиппокампе следующими словами: «Самое поразительное в гиппокампе – анатомическая элегантность его структуры, подробно изученная в последние годы. Это разительно контрастирует с тем, как мало мы понимаем о назначении этой элегантности»[9].

Впрочем, кое-какие предположения имелись. В 1888 году два физиолога, работавшие в Лондонском университете, Браун и Шэфер, предприняли попытку определить функции различных фрагментов височной доли с помощью экспериментов над бенгальскими макаками. Одной из обезьян, крупной и активной, они полностью удалили обе височные доли, включая и гиппокамп. В результате резекции сенсорные способности обезьяны, судя по всему, не пострадали, однако исследователи обратили внимание на одну необычную деталь. Обезьяна очень внимательно рассматривала различные предметы, других обезьян, а также людей, даже если видела их всего несколько минут назад, «как будто напрочь забывала о своих недавних экспериментах»[10]. А в 1890 году Бехтерев описал пациента, имевшего значительные проблемы с памятью. После смерти пациента было проведено вскрытие, выявившее повреждения мозговой ткани в области височных долей, в том числе и в гиппокампе[11]. Однако тогда описанные случаи не получили широкой огласки в научных кругах, и о них знали очень и очень немногие психологи и нейрохирурги.

Во вторник, 25 августа 1953 года, Генри Молисон в полном сознании лежал на операционном столе и беседовал со Сковиллом и вспомогательным медицинским персоналом, собравшимся вокруг него[12]. Ему сделали местную анестезию на область лба, где хирург наметил точку входа. В самом мозге болевых рецепторов нет, поэтому полный наркоз не требовался. Как только местный наркоз подействовал, доктор Сковилл сделал надрез вдоль морщины на лбу Молисона и оттянул кожу в сторону, открывая кость. Затем Сковилл пробурил в черепе прямо над бровью два отверстия и удалил круглые кусочки кости, обнажив мозг.

Теперь настало время для последней попытки выяснить, где локализуются эпилептические припадки пациента. Хирург разместил электроды прямо на мозговой ткани, однако и в этот раз ему не удалось выяснить, где «живет» недуг. Поэтому Сковилл продолжил запланированную обширную резекцию. Он разрезал твердую мозговую оболочку, и под ней показался сам мозг, пульсировавший в такт дыханию и биению сердца пациента. Сковилл ввел сквозь одно из отверстий длинный нейрохирургический шпатель и приподнял лобную долю. Одновременно весь остальной мозг слегка опустился в полости черепа, открыв дополнительное пространство для маневра. Ему была видна передняя часть гиппокампа. Сковилл ввел в отверстие еще один инструмент, с помощью которого стал отсасывать фрагменты мягкой мозговой ткани. Кусочек за кусочком он удалил примерно половину гиппокампа и прилегающие к нему области коры. Затем он повторил те же действия с другой стороны.

Вскоре после операции стало очевидно, что она произвела совершенно неожиданное и крайне нежелательное воздействие на молодого пациента. Генри Молисон перестал узнавать медицинский персонал, не мог самостоятельно отыскать дорогу в туалет и, похоже, не помнил ничего из происходившего с ним в больнице. Сохранились, по всей видимости, только детские воспоминания. Все остальное он проживал как в первый раз.

Этот поразительный эффект убедил многих ученых в том, что гиппокамп играет важную роль в функционировании человеческой памяти[13]. Тем не менее случай Генри Молисона не стал решающим доказательством, в частности из-за того, что, помимо самого гиппокампа, ему удалили и другие области височной доли – фрагменты коры больших полушарий вокруг него и миндалевидное тело. А следовательно, за неспособность Молисона формировать новые воспоминания могла отвечать любая из удаленных областей.

После той операции по всему миру прокатилась волна интереса к исследованиям гиппокампа. И поскольку ставить эксперименты над людьми было невозможно, ученые искали способы изучать память животных. Но как узнать, что животное что-то помнит, если оно не может об этом рассказать? Оказалось, что идеальным материалом для исследования роли гиппокампа в обучении и памяти является естественная способность крыс ориентироваться в лабиринте. Хоть крысы и не могли рассказать ученым, что они запомнили, можно было легко и просто выяснить это, отмечая время, за которое грызуны добирались до определенного места в лабиринте.

Тем не менее психологам было еще очень далеко до понимания, какие процессы происходят в человеческом мозге, когда образуются новые воспоминания или когда человек усваивает новые знания. Вся надежда была на то, что удастся поймать мозг млекопитающего «с поличным» и зафиксировать физическую активность нейронов в момент обучения.

След памяти

В начале 1980-х, когда Эдвард и Мэй-Бритт учились в университете, исследования мозга были так популярны, что по норвежскому телевидению в прайм-тайм показывали передачу под названием «Ваш потрясающий мозг». Она появилась во многом благодаря усилиям Пера Андерсена – признанного во всем мире нейробиолога и талантливого популяризатора науки.

На заставке передачи показывали изображение мозга на черном фоне, а затем в кадре появлялись силуэты двух участников, сидящих за столом. После этого включались прожекторы, и камера наезжала на ведущего – Пера Эйвинна Херадствейта в костюме и крупных очках в прямоугольной черной оправе. В одном из эпизодов, посвященных памяти, ведущий начинает передачу такими словами: «Сегодня мы поговорим о воспоминаниях, памяти и нашей способности запоминать. Но прежде чем нечто запомнить, мы должны подумать об этом, выучить это. Итак, что же происходит, когда мы думаем?»

Камера переключается на Пера Андерсена, тоже одетого в костюм и галстук и, судя по всему, чувствующего себя в этой студии гораздо более раскованно, чем сам ведущий. Он улыбается, показывая зрителям щель между передними зубами: «Вот вы меня спрашиваете, а с тем же успехом этот вопрос можно задать вам». Далее Андерсен объясняет, что ученые до сих пор толком не знают, что именно происходит, но считается, что мысль – это своего рода эстафета, в которой нейроны передают друг другу импульсы. И если заменить некоторые нейроны в этой эстафете другими, получится другая мысль[14]. Эта телепередача рассказывала норвежским зрителям о передовых достижениях нейронауки, и во многом благодаря ей Пер Андерсен прославился на всю страну.

В 1988 году Эдвард и Мэй-Бритт приближались к завершению своего курса обучения, а их отношения давно уже переросли из дружеских в романтические. Вместе они делали все. На каникулах они совершали путешествия в Южную Америку и Африку. В 1984 году они обручились на вершине самой высокой горы Африки – Килиманджаро, а год спустя поженились. В рамках обучения они вместе участвовали в одном из проектов психолога Терье Сагволдена, который работал в Институте нейрофизиологии бок о бок с Пером Андерсеном. Институт располагался в одном из старейших зданий университета – на улице Карла Юхана, через дорогу от Национального театра.

Читать бесплатно другие книги:

«Поднявшись с кровати, я бросила взгляд на свой ночлег и то, что я увидела, меня поразило. На белосн...
Это продолжение исследовательской работы «Запрещённые Артефакты — 2020». Сегодня мы с уверенностью м...
Матричные мысленные технологии работы с энергиями – это мощнейший и безопасный способ решения множес...
Хоть размерами Тровенланду не сравниться с Гетландом или Ванстером, ключом к процветанию этого корол...
Евгения знала: старинная загородная усадьба с необычным названием Мухина дача им с мужем не по карма...
Сага о великой любви Клэр Рэндол и Джейми Фрэзера завоевала серд­ца миллионов читателей во всем мире...