Рассказ предка. Паломничество к истокам жизни Докинз Ричард

Если не пользоваться каким-либо органом, при прочих равных условиях он уменьшится по сравнению с другими – уже по причине экономии. У млекопитающих хвосты служат выполнению удивительно широкого ряда задач. Сейчас нас интересуют животные, которые живут на деревьях. Белке хвост нужен, чтобы “взлетать” при прыжке – ее прыжок на самом деле почти полет. У древесных жителей не редкость длинные хвосты, которые они используют как противовес или руль при прыжках. Лори и потто (рандеву № 8) медленно ползают по веткам, подкрадываясь к добыче, и хвосты у них очень короткие. Родственные им галаго, наоборот, весьма энергичные прыгуны с длинными пушистыми хвостами. У ленивцев (и у их австралийских близнецов – коал) хвостов нет: и те, и другие медленно ползают по деревьям.

На островах Калимантан и Суматра длиннохвостый (яванский) макак обитает на деревьях, а свинохвостый макак, его близкий родственник, живет на земле и имеет короткий хвост. У обезьян, которые активно перемещаются по деревьям, обычно длинные хвосты. Они бегают по веткам на четырех лапах, используя хвост для поддержания равновесия. Прыгая с ветки на ветку, они держат туловище горизонтально и вытягивают хвост, орудуя им как рулем. Почему же тогда у гиббонов, которые скачут по деревьям не хуже макак, нет хвоста? Возможно, причина в том, что они передвигаются совсем иначе. Как я говорил, все человекообразные обезьяны временами ходят на двух ногах. Гиббоны, когда они не пользуются брахиацией, ходят по веткам на задних конечностях, балансируя длинными передними. Легко представить, какой помехой является хвост при двуногом передвижении. Мой коллега Десмонд Моррис говорил, что паукообразная обезьяна иногда ходит на задних ногах, и тогда длинный хвост ей явно мешает. Когда гиббон собирается перепрыгнуть на другое дерево, он вертикально повисает на ветке, а не встает горизонтально, как макак.

Поэтому хвост за спиной, который не используется в качестве руля, был бы помехой для гиббона, который передвигается с помощью вертикальной брахиации (а также, предположительно, и для сопредка № 4).

Вот и все, что я могу об этом сказать. Думаю, зоологам нужно уделить больше внимания выяснению того, почему мы, человекообразные обезьяны, утратили хвост. Ведь возникает масса проблем! Например, как хвост сочетался бы с обычаем носить одежду, особенно брюки? Это придало бы новый смысл традиционному вопросу портного: “Сэр, вам ширинку налево или направо?”

Рассказ Гиббона[12]

На рандеву № 4 мы встречаем крупную группу пилигримов. И теперь могут возникнуть проблемы с установлением родства. (Чем дальше, тем затруднительнее это сделать.) Существует двенадцать видов гиббонов, принадлежащих к четырем основным группам. Это Bunopithecus (группа, представленная одним видом, известным как хулок); настоящие гиббоны Hylobates – шесть видов, самый известный – белорукий гиббон (Hylobates lar); сиаманг (Symphalangus) и номаски (Nomascus) – четыре вида “хохлатых” гиббонов. Сейчас я объясню, как построить схему эволюционных отношений, или филогению, для этих четырех групп.

Генеалогические деревья могут быть укорененными или неукорененными. В случае укорененного древа нам известно, кто является предком. Большинство деревьев в этой книге – укорененные. Неукорененные деревья, напротив, не отражают направление эволюции. Их называют звездчатыми диаграммами. В них не заложена стрела времени, и нельзя сказать, где у них начало, а где конец. Здесь приведены три примера, описывающие отношения четырех родственных групп гиббонов.

Неважно, какая ветвь окажется справа в точке ветвления, а какая – слева. Длина ветвей до сих пор не имела значения (это скоро изменится). Древовидная диаграмма, в которой длина ветвей не несет информации, называется кладограммой (в данном случае неукорененной). Порядок ветвления – вот главная информация, отраженная в кладограмме. Попробуйте перевернуть любую из боковых вилок вокруг центральной горизонтальной линии: это ничего не изменит в схеме отношений между группами.

Рис.11 Рассказ предка. Паломничество к истокам жизни

Эти три неукорененные кладограммы описывают возможные отношения четырех видов – при условии, что мы рассматриваем лишь случаи дихотомического ветвления. Как и для укорененных деревьев, случаи разделения на три (трихотомия) и больше ветвей (политомия) мы допускаем, когда у нас недостаточно информации (“неразрешенные” ветви).

Любая неукорененная кладограмма может стать укорененной – для этого нужно указать самую старшую точку на древе (“корень”). Некоторые исследователи – те, на которых мы ссылались при рассмотрении древа в начале этого рассказа, – предлагают для гиббонов укорененную кладограмму слева. Другие предпочитают укорененную кладограмму справа. На первой схеме хохлатые гиббоны (номаски) представлены дальними родственниками всех остальных гиббонов. На второй схеме на их место помещен хулок. Несмотря на это различие, оба древа производны от одного неукорененного дерева (А). Кладограммы отличаются лишь корнем. На первой он расположен на ветви номасков, а на второй – на ветви Bunopithecus.

Рис.12 Рассказ предка. Паломничество к истокам жизни

Как происходит “укоренение”? Самый распространенный способ – расширить древо, включив в него по меньшей мере одну “внешнюю” группу, которая является заведомо далеким родственником по отношению ко всем другим представленным группам. Например, на древе, построенном для гиббонов, внешней группой может быть орангутан или горилла – а еще лучше слон или кенгуру. Можно сколько угодно сомневаться по поводу взаимоотношений групп гиббонов, но мы точно знаем, что общий предок любого гиббона с большими человекообразными обезьянами (или слоном) старше, чем общий предок любого гиббона с любым другим гиббоном. Поэтому, строя древо, включающее гиббонов и крупных человекообразных обезьян, мы не ошибемся, поместив корень где-то между ними.

Легко заметить, что три неукорененных древа, которые я нарисовал, описывают все возможные дихотомические деревья для четырех групп. Для пяти групп будет 15 таких деревьев. Но не стоит и пытаться сосчитать количество возможных деревьев для, скажем, 20 групп. Их сотни миллионов миллионов миллионов[13]. Число резко возрастает с ростом числа групп, которые мы желаем классифицировать, и даже у самого мощного компьютера такие расчеты могут занять целую вечность. Однако в принципе задача довольно проста. Из всех возможных деревьев нужно выбрать те, которые лучше всего объясняют сходства и различия наших групп.

Но что значит – “лучше всего объясняют”? Когда мы рассматриваем выборку животных, количество сходных и отличных черт может оказаться практически бесконечным. Сосчитать их труднее, чем кажется. Нередко один “признак” является неотделимой частью другого. И если мы сочтем эти признаки независимыми, окажется, что на самом деле мы учли одни и те же признаки дважды. Представьте, например, многоножек четырех видов: A, B, C и D. Многоножки A и B сходны во всем, кроме того, что у А конечности красные, а у B – синие. Многоножки C и D сходны друг с другом и отличаются от A и B – но у C конечности красные, а у D – синие. Если мы сочтем цвет конечностей одним “признаком”, мы справедливо поместим A и B в одну группу, а C и D – в другую. Но если мы будем считать каждую ножку из ста отдельным признаком, количество этих признаков перевесит все остальные, и тогда A сгруппируется с C, а B – с D. Очевидно, что в этом случае мы просто сто раз посчитали один и тот же признак. А на самом деле это один признак, потому что цвет всех ста ножек определяется одним эмбриологическим “событием”.

То же верно и для двусторонней симметрии: эмбриогенез таков, что, за редкими исключениями, одна сторона тела животного является зеркальным отражением второй. Ни один зоолог, строя кладограмму, не будет считать дважды “левый” и “правый” признак. Впрочем, не всегда очевидно, какие признаки независимы. Голубю нужна крупная грудина для крепления летательных мышц. А нелетающим птицам, например киви, она не нужна. Должны ли мы считать мощную грудину и способные к полету крылья двумя независимыми признаками, отличающими голубя от киви? Или сочтем их единым признаком на том основании, что состояние одного признака определяет состояние второго – или, по крайней мере, уменьшает его изменчивость? В случае многоножек и зеркальной симметрии правильный ответ очевиден. А в случае грудины – нет. На этот счет может иметься две вполне обоснованные точки зрения.

До сих пор мы говорили о внешнем сходстве и различии. Однако внешние признаки эволюционируют лишь в том случае, если они – проявления последовательностей ДНК. Сегодня мы можем непосредственно сравнить последовательности ДНК. Дополнительное преимущество ДНК заключается в том, что она имеет длинные цепочки, и “текст” ДНК предоставляет гораздо больше признаков, которые можно считать и сравнивать. Проблемы крыльев и грудин просто тонут в огромном потоке данных, которые дает нам ДНК. Более того, многие различия в ДНК “невидимы” для естественного отбора и поэтому являются более “чистыми” свидетельствами родства. Например, многие сочетания нуклеотидов в ДНК синонимичны: они кодируют одну и ту же аминокислоту. Мутация, меняющая сочетание нуклеотидов на синонимичное, невидима для естественного отбора. Однако для генетика такая мутация не хуже любой другой. То же относится и к “псевдогенам” (обычно это случайные копии работающих генов), и ко многим другим “мусорным” последовательностям ДНК, которые располагаются на хромосомах, но не считаются и не используются. Независимая от естественного отбора ДНК получает возможность свободно мутировать, а это обеспечивает специалистов по систематике высокоинформативными данными. Это не отменяет того, что некоторые мутации могут иметь реальный и значительный эффект. Их замечает отбор, они отвечают за видимую глазу красоту и сложность всего живого.

ДНК тоже подвержена проблеме повторного подсчета и нередко представляет собой молекулярный аналог конечностей многоножки. Иногда последовательность представлена многими копиями в разных частях генома. Примерно половина ДНК человека состоит из множественных копий бессмысленных последовательностей, так называемых мобильных элементов, которые, возможно, являются паразитами, захватившими аппарат репликации ДНК, чтобы расселиться по геному. Один из этих паразитических элементов, Alu, у большинства людей представлен более чем миллионом копий. (С ним мы еще встретимся в “Рассказе Ревуна”.) Даже в случае кодирующих участков ДНК гены в некоторых случаях могут быть представлены десятками идентичных (или почти идентичных) копий. Однако на практике повторный подсчет – не такая уж большая проблема: дублированные последовательности ДНК довольно легко обнаружить.

Опасно другое. Иногда обширные области ДНК проявляют таинственное сходство с последовательностями ДНК отдаленных видов. Никто не сомневается, что птицы ближе к черепахам, ящерицам, змеям и крокодилам, чем к млекопитающим (рандеву № 16). Однако последовательности ДНК птиц и млекопитающих имеют большее сходство, чем можно ожидать. И у тех, и у других в некодирующей ДНК наблюдается избыток пар Г – Ц. Пары Г – Ц химически стабильнее пар A – T. Возможно, теплокровные виды (птицы и млекопитающие) нуждаются в более “крепкой” ДНК. Каково бы ни было объяснение, мы должны быть осторожны и не позволять этому смещению Г – Ц убедить нас в том, что все теплокровные животные – близкие родственники. Хотя специалисты по систематике утверждают, что ДНК – это все, о чем можно мечтать, нельзя забывать: мы по-прежнему многого не понимаем в геноме.

Как использовать информацию, заключенную в ДНК? Литературоведы, изучая происхождение текстов, используют ту же технику, что и эволюционные биологи. И, хотя это звучит неправдоподобно, одним из лучших примеров является проект по изучению “Кентерберийских рассказов”. Участники этого международного проекта использовали инструменты эволюционной биологии, чтобы проследить историю 85 списков “Кентерберийских рассказов”. Эти манускрипты – наша главная надежда на восстановление утраченного оригинала. Как и ДНК, текст Чосера уцелел благодаря многократному копированию. При этом каждый раз при копировании возникали случайные изменения. Тщательно оценив накопленные отличия, исследователи реконструируют историю копирования и строят эволюционное древо – потому что это настоящий эволюционный процесс, при котором с каждым поколением накапливаются ошибки. Способы реконструкции эволюции ДНК и текста настолько похожи, что каждый из них может служить иллюстрацией другого.

Отвлечемся от гиббонов и займемся Чосером, а именно четырьмя из 85 списков “Кентерберийских рассказов”. Эти рукописи называются: “Британская библиотека” (British Library), “Крайст-Черч” (Christ Church), “Эджертон” (Edgerton) и “Хенгурт” (Hengwrt)[14]. Вот две первые строки “Общего пролога”:

  • Когда Апрель обильными дождями
  • Разрыхлил землю, взрытую ростками…[15]

Теперь сравним. Список из Британской библиотеки гласит:

  • Whan that Aprylle / wyth hys showres soote
  • The drowhte of Marche / hath pcede to the rote

“Крайст-Черч”:

  • Whan that Auerell wt his shoures soote
  • The droght of Marche hath pced to the roote

“Эджертон”:

  • Whan that Aprille with his showres soote
  • The drowte of marche hath pced to the roote

“Хенгурт”:

  • Whan that Aueryll wt his shoures soote
  • The droghte of March / hath pced to the roote

Первое, что нужно сделать с последовательностью ДНК или текстом, – выявить сходства и различия. Для этого нужно их “выровнять” – а это бывает не так-то просто: тексты могут быть фрагментарными и иметь разную длину. Здесь очень помогает компьютер, но чтобы выровнять первые две строки “Общего пролога”, он не понадобится. На рисунке выделены 14 позиций, по которым тексты не совпадают.

Вторая и пятая позиции представлены даже не двумя вариантами, а тремя. В целом это дает 16 “различий”. После того, как мы составили список различий, нужно определить, какое древо лучше всего их объясняет. Есть множество способов это сделать, и все их можно применить и к животным, и к текстам. Самый простой пример – группировка текстов на основе общего сходства. Как правило, при этом используют варианты следующего метода. Сначала мы находим пару наиболее сходных текстов. Затем мы используем эту пару в качестве единого усредненного текста и сравниваем его с оставшимися, чтобы найти следующую пару наиболее сходных текстов. Так мы последовательно формируем новые пары, пока не получится генеалогическая схема. Такой способ построения деревьев используется чаще всего и называется методом поиска ближайшего соседа (neighbourpmmg). Он прост, но не учитывает логику эволюционного процесса: мы просто оцениваем сходство. Поэтому сторонники “кла-дистического” подхода в систематике (он основан на принципах эволюции) предпочитают иные методы. Первым был разработан метод парсимонии (экономии).

Экономия, как мы узнали из “Рассказа Орангутана”, означает здесь экономичность объяснения. В эволюции (животного ли, манускрипта ли) самым экономичным является объяснение, подразумевающее наименьшее число эволюционных изменений. Если два текста объединены общим признаком, самое экономичное объяснение будет гласить: оба текста унаследовали этот признак от общего предка. Конечно, и у этого правила есть исключения, однако чаще всего оно верно. Метод парсимонии – по крайней мере в теории – сравнивает все возможные деревья и выбирает то, в котором количество изменений минимально.

Когда мы сравниваем деревья по их экономичности, некоторые виды признаков оказываются бесполезными. Признаки, уникальные для манускрипта или вида животного, неинформативны. В методе поиска ближайшего соседа такие признаки учитываются, однако метод парсимонии целиком их игнорирует. Метод парсимонии опирается на информативные признаки, то есть такие, которые наблюдаются более чем в одном манускрипте. Предпочтительным древом является объясняющее максимальное количество информативных признаков общим происхождением. В строках Чосера пять таких информативных признаков. Четыре из них делят манускрипты на следующие группы:

Рис.13 Рассказ предка. Паломничество к истокам жизни

{“Британская библиотека” + “Эджертон”} и (“Крайст-Черч” + “Хенгурт”}

Эти признаки выделены первой, третьей, седьмой и восьмой вертикальными линиями. Пятый признак – косая черта – выделен двенадцатой вертикальной линией. По этому признаку манускрипты подразделяются на другие группы:

{“Британская библиотека” + “Хенгурт”} и {“Крайст-Черч” + “Эджертон”}

Полученные результаты противоречат друг другу. Мы не можем построить древо, в котором каждое изменение отображалось бы лишь один раз. Самым приемлемым окажется древо, изображенное ниже (заметьте – оно неукорененное). Эта схема сокращает противоречия до минимума: мы повторно учитываем лишь один признак – косую черту.

Рис.14 Рассказ предка. Паломничество к истокам жизни

Вообще-то я не уверен, что мы сделали правильное предположение. В текстах часто встречаются совпадения и реверсии, особенно если смысл строк при этом не меняется. Средневековый переписчик наверняка не испытывал угрызений совести, изменяя написание, и еще меньше его волновали вставки или удаления знаков, например косой черты. В этом случае информативнее такие изменения, как перестановка слов. В генетике аналогами таких изменений являются “редкие геномные изменения”: крупные вставки, делеции и дупликации ДНК. Мы можем оценить информативность, присвоив большее или меньшее значение (вес) различным типам признаков. Недостоверные или слишком частые изменения при подсчете будут иметь меньший вес. А редкие изменения, которые служат надежными показателями родства, – больший вес. Повышенный вес признака говорит о том, что мы не хотим учитывать его дважды. Таким образом, наиболее экономное древо – то, которое имеет наименьший общий вес.

Метод парсимонии широко используется для поиска эволюционных деревьев. Но в том случае, когда конвергенций и реверсий слишком много – а это случается и с последовательностями ДНК, и с текстами Чосера, – метод парсимонии может оказаться недостоверным. Эта проблема известна как “эффект притяжения длинных ветвей”.

Кладограммы – как укорененные, так и неукорененные – отражают лишь порядок ветвления. Филограммы, или филогенетические деревья, похожи на кладограммы, но в них длина ветвей несет дополнительную информацию. Обычно длина ветвей отражает эволюционное расстояние: длинные ветви обозначают крупные изменения, а короткие – мелкие. На основе первой строки “Кентерберийских рассказов” можно построить следующую филограмму.

Рис.15 Рассказ предка. Паломничество к истокам жизни

Здесь длина ветвей не слишком различается. Но представьте, что будет, если два манускрипта сильно отличаются от двух других. Тогда ветви первых манускриптов будут очень длинными. Однако изменения могут оказаться не уникальными. Изменения могут случайно оказаться идентичными изменениям в другом месте древа. Но с наибольшей вероятностью (именно в этом заключается проблема) они совпадут с изменениями на другой длинной ветви. Ведь длинные ветви – это те, в которых произошло наибольшее число изменений. И если изменений окажется слишком много, две длинные ветви на филограмме будут отображаться как родственные, даже если это не так. Таким образом, метод парсимонии, основываясь на простом подсчете изменений, может ошибочно сгруппировать две самые длинные ветви, “притянуть” их друг к другу.

Эффект притяжения длинных ветвей – серьезная помеха для систематики. Он проявляется везде, где много конвергенций и реверсий. К сожалению, эту проблему нельзя решить простым увеличением объема рассматриваемого текста. Наоборот, чем больше текст, тем выше вероятность обнаружения случайных совпадений. Про такие деревья говорят, что они лежат в “зоне Фельзенстайна” (звучит устрашающе!), названной в честь американского биолога Джо Фельзенстайна. Увы, ДНК особенно подвержена эффекту притяжения длинных ветвей. Основная причина в том, что в ДНК всего четыре “буквы”. Поскольку большинство изменений затрагивают всего одну “букву”, случайные мутации с высокой вероятностью могут привести к совпадениям. Так возникает притяжение длинных ветвей. Очевидно, что для таких случаев нужна альтернатива методу парсимонии. Она существует – это метод правдоподобия. В последнее время он используется все чаще.

Оценка правдоподобия требует больше вычислительных мощностей, чем метод парсимонии, поскольку здесь мы учитываем длину ветвей. Таким образом, приходится иметь дело с еще большим количеством деревьев: вдобавок к рассмотрению возможных схем ветвления мы должны учитывать возможные длины ветвей. Геркулесов труд! Поэтому, несмотря на упрощенные методы вычисления, компьютеры пока могут подвергнуть анализу небольшое количество видов.

Термин “правдоподобие” здесь имеет вполне точное значение. Возьмем древо определенной формы (с учетом длины ветвей). Из всех возможных эволюционных траекторий, посредством которых может сформироваться филогенетическое древо данной формы, всего несколько могут привести к тому тексту, который мы сейчас видим. "Правдоподобие” данного древа – это ничтожно малая вероятность получения реально существующих текстов, а не каких-нибудь текстов, которые могут появиться на таком древе. Величина правдоподобия для древа очень мала, однако это не мешает сравнить одну малую величину с другой, чтобы выбрать нужную.

Рис.16 Рассказ предка. Паломничество к истокам жизни

Неукорененное филогенетическое древо первых 250 строк 24 списков "Кентерберийских рассказов". Здесь представлен набор списков, изученный в рамках проекта "Кентерберийские рассказы". Сокращения соответствуют тем, что использованы в проекте. Схема построена методом парсимонии, на каждой ветви указаны индексы бутстреп-поддержки. Для четырех списков, которые обсуждаются нами, указаны их полные названия.

Выбирать "лучшее” древо методом правдоподобия можно по-разному. Самый простой способ – искать наиболее правдоподобное древо. Это метод максимального правдоподобия. Однако то, что это наиболее правдоподобное древо, вовсе не означает, что другие деревья не окажутся почти столь же правдоподобными. Совсем недавно было предложено не искать одно самое правдоподобное древо, а рассматривать все возможные. При этом степень "доверия” к древу должна зависеть от его правдоподобия. Этот подход представляет собой альтернативу методу правдоподобия и известен как байесовский метод. Если схема ветвления подтверждается большим количеством правдоподобных деревьев, мы заключаем, что эта схема с высокой вероятностью верна. Конечно, как и в методе максимального правдоподобия, мы не можем проверить все деревья. Но существуют способы упрощения вычислений, и они довольно неплохо работают.

Степень нашего доверия древу, которое мы в итоге выберем, зависит от того, насколько мы уверены в правильности каждого разветвления. Поэтому возле точек ветвления часто указывают степень “уверенности” в них. При использовании байесовского метода правдоподобие точек ветвления вычисляется автоматически, однако для других методов, таких как парсимония или максимальное правдоподобие, необходимы альтернативные способы подсчета. Чаще всего используют метод бутстрепа: многократно обсчитываются выборки данных, и оценки сравниваются с результатами для всего древа. Так мы можем понять, насколько древо устойчиво к ошибкам. Чем больше индекс бутстреп-поддержки, тем надежнее точка ветвления. Правда, точно интерпретировать полученные индексы бывает непросто. По сходному алгоритму работают методы “складного ножа” (jackknife) и “поддержки Бремера”. Все они служат для оценки достоверности точек ветвления.

Прежде чем оставить литературу, рассмотрим итоговое древо, построенное для первых 250 строк в 24 манускриптах Чосера. Это филограмма, на которой информативна не только схема ветвления, но и длина ветвей. На схеме видно, какие списки почти идентичны, а какие сильно отличаются от остальных. Эта филограмма неукорененная, то есть не указывает на то, какой из 24 манускриптов ближе всех к “оригиналу”.

Вернемся к гиббонам. Принцип парсимонии предполагает существование четырех групп. Ниже приведена укорененная диаграмма, основанная на морфологических признаках. Здесь виды рода Hylobates (настоящие гиббоны) группируются вместе, как и виды рода Nomascus. Обе группы поддерживаются высокими индексами бутстреп-поддержки (указаны над ветвями). Однако в нескольких местах порядок ветвлений не определен. Хотя Hylobates и Bunopithecus вроде бы формируют группу, индекс бутстреп-поддержки (63) представляется неубедительным для тех, кто умеет читать подобные руны. Морфологических признаков для построения древа недостаточно.

Рис.17 Рассказ предка. Паломничество к истокам жизни

Укорененная кладограмма гиббонов, построенная на основе морфологии. Geissmann [100].

По этой причине Кристиан Роос и Томас Гайсман, ученые из Германии, обратились к молекулярной генетике, а именно к участку митохондриальной ДНК, который называют контрольным регионом. Взяв ДНК шести гиббонов, они расшифровали последовательности, выровняли их и провели анализ с помощью методов поиска ближайшего соседа, парсимонии и максимального правдоподобия. Самый убедительный результат был получен с помощью метода максимального правдоподобия, который лучше других методов справляется с эффектом притяжения длинных ветвей. Итоговое древо, где показаны отношения между четырьмя группами, приведено здесь. Значения бутстреп-поддержки на этом древе вполне убедительны. Так что, на мой взгляд, это то, что нам нужно.

Рис.18 Рассказ предка. Паломничество к истокам жизни

Кладограмма гиббонов, построенная с помощью метода максимального правдоподобия по данным ДНК. Roos and Geissmann [246].

Видообразование у гиббонов произошло сравнительно недавно. Однако если изучать все более удаленные виды, которые будут разделены все более длинными ветвями, в конце концов даже изощренные методы Байеса и максимального правдоподобия откажутся нам служить. В определенный момент недопустимо большая доля сходств окажется случайной. Когда это происходит с ДНК, говорят, что наступило насыщение. И тогда ни один метод не поможет реконструировать схему родственных отношений: действие времени заглушает “филогенетический” сигнал. Особенно остро этот вопрос стоит в отношении нейтральных мутаций ДНК. Давление естественного отбора не позволяет генам сбиваться с пути, удерживая их в узком диапазоне. В некоторых случаях самые важные функциональные гены могут оставаться практически неизменными сотни миллионов лет. Однако для псевдогена, с которого никогда ничего не считывается, таких промежутков времени достаточно для безнадежно сильного насыщения. В таких случаях нам приходится искать другие данные. Одна из самых перспективных идей – использование редких геномных мутаций, о которых я упоминал. Эти изменения затрагивают значительные участки ДНК, а не одну “букву”. Поскольку такие перестройки редки и, как правило, уникальны, проблема случайного сходства не возникает. Эти мутации могут выявлять неожиданные родственные связи. Мы убедимся в этом, когда к толпе пилигримов присоединятся гиппопотамы. (Вот увидите, они расскажут удивительные вещи!)

А теперь обобщим то, что узнали из “Рассказа Митохондриальной Евы” и “Рассказа Неандертальца”. Cчитается, что для группы видов должно существовать лишь одно эволюционное древо. Однако из “Рассказа Митохондриальной Евы” видно, что на основе разных участков ДНК (а также для разных признаков или разных частей тела) можно построить разные деревья. Мне кажется, эта проблема заложена в самой идее филогенетических деревьев видов. Ведь вид представляет собой сложную мозаику фрагментов ДНК, полученных из разных источников. Мы увидели, что каждый ген, да и каждая “буква” ДНК, эволюционирует независимо. Для каждого фрагмента ДНК и каждого признака организма можно построить свое эволюционное древо.

С доказательствами этого мы сталкиваемся каждый день – и поэтому их не замечаем. Если предьявить марсианину гениталии мужчины, женщины и самца гиббона, пришелец, не колеблясь, решит, что наиболее близким родством связаны два самца. И правда: ген, определяющий мужской пол (SRY), никогда не бывал в теле женщины – а если и бывал, то задолго до того, как мы разошлись с гиббонами. Морфологи традиционно делают исключение для половых признаков, избегая “бессмысленных” классификаций. Однако такого рода проблемы встречаются на каждом шагу. Мы столкнулись с этим в “Рассказе Митохондриальной Евы”, когда говорили о группе крови ABo. Если рассматривать гены группы крови, окажется, что мой ген группы крови B сближает меня с шимпанзе с группой крови B, а не A. Все это касается не только генов, определяющих пол, или генов группы крови. Нет, при определенных обстоятельствах эта проблема затрагивает абсолютно все гены и признаки. Большинство молекулярных и морфологических признаков указывает на то, что шимпанзе – наш ближайший родственник. Однако меньшая доля признаков указывает на то, что наш ближайший родственник – горилла, или что шимпанзе ближе всего к гориллам, а не к человеку.

Не удивляйтесь! Популяция, предковая для всех трех видов, должна быть очень изменчивой, и у каждого гена в популяции должно быть несколько вариантов. Каждый из вариантов передается по своей линии. Вполне возможно, например, что человек и горилла получили некий ген от одной линии, а шимпанзе – от другой. После этого нужно только, чтобы разошедшиеся в древности генетические линии тянулись непрерывно до точки расхождения человека и шимпанзе. И получится, что человек произошел от одной линии, а шимпанзе – от другой[16].

Приходится признать, что одно древо не описывает весь эволюционный сюжет. Ничто не мешает нам продолжать строить деревья для видов, однако нужно помнить, что эти деревья представляют не более чем обобщение множества генных деревьев. Интерпретировать деревья можно двумя способами. Первый – традиционная генеалогическая интерпретация. Один вид является ближайшим родственником другого, если из всех рассмотренных видов именно с ним его связывает самый поздний общий предок. Второй способ интерпретации, мне кажется, только предстоит освоить. Согласно этому подходу, построенное для группы видов древо отражает родственные отношения большей части генов. То есть древо показывает результаты, за которые гены высказались “большинством голосов”.

Мне больше нравится идея голосования генов. Поэтому, когда я говорю о родстве видов, его нужно понимать именно так. Все филогенетические деревья, которые я здесь обсуждаю – касаются ли они животных, растений, грибов или бактерий, – нужно рассматривать как схемы, отражающие идеи “генного большинства”.

Рис.19 Рассказ предка. Паломничество к истокам жизни

Узконосые обезьяны. Это общепризнанное филогенетическое древо, построенное примерно для ста видов обезьян Старого Света. (Кружки на концах ветвей указывают на количество видов в каждой группе: отсутствие кружка означает 1–9 известных видов, небольшой кружок соответствует 10–99 видам, круг побольше – 100–999 и т. д. Каждая из представленных здесь четырех групп объединяет 10–99 видов.)

На рис. (слева направо): мандрил (Mandrillus sphinx), краснохвостая мартышка (Cercopithecus ascanius), носач (Nasalis larvatus), ангольский чернобелый колобус (Colobus angolensis).

Рандеву № 5

Обезьяны Старого Света

Приближаясь к рандеву № 5 и готовясь к встрече с сопредком № 5 (нашим прародителем приблизительно в полуторамиллионном поколении), мы пересекаем важный (хотя и произвольно выбранный) рубеж. Впервые с начала путешествия мы вступаем в другой геологический период, палеоген, и оставляем неоген. В следующий раз, пересекая границу, мы окажемся в населенном динозаврами мире – в меловом периоде. Рандеву № 5 проходит около 25 млн лет назад, в олигоценовую эпоху палеогена. Это последняя остановка на дороге в прошлое, во время которой климат и растительность покажутся нам знакомыми. Дальше мы не увидим открытых поросших травой пространств, типичных для неогена, или мигрирующих стад травоядных. Около 25 млн лет назад Африка была полностью изолирована. Даже от ближайшей к ней Испании ее отделял пролив, по ширине равный сегодняшнему Мозамбикскому проливу. На этом огромном острове – Африке – наша команда пополнится новыми участниками, весьма ловкими и сообразительными. Встречайте обезьян Старого Света – первых наших хвостатых спутников.

Сейчас насчитывается почти сто видов обезьян Старого Света. Некоторые когда-то эмигрировали и живут в Азии (см. “Рассказ Орангутана”). Их делят на две крупные группы. Первую составляют африканские колобусы и азиатские лангуры и носачи, вторую – азиатские макаки плюс африканские павианы, мартышки и так далее.

Последний общий предок всех живущих ныне обезьян Старого Света жил примерно на 11 млн лет позднее сопредка № 5, то есть около 14 млн лет назад. Наиболее репрезентативный ископаемый род того времени – викториапитек (Victoriapithecus), от скелета которого сохранилось более тысячи фрагментов, включая отменный череп с острова Мабоко на озере Виктория. Итак, 14 млн лет назад обезьяны Старого Света приветствуют своего предка. Может быть, это сам викториапитек, а может, кто-то похожий на него. Затем пилигримы отправляются в прошлое и на отметке 25 млн лет присоединяются к человекообразным обезьянам и сопредку № 5.

На кого был похож сопредок № 5? Возможно, он напоминал египтопитеков (Aegyptopithecus), которые жили 7 млн лет ранее. Пытаясь реконструировать облик сопредка № 5, применим эмпирическое правило. С высокой вероятностью сопредок № 5 имел признаки, общие для его потомков – узконосых обезьян (Catarrhina), к которым относят человекообразных обезьян и обезьян Старого Света. Так, у сопредка № 5, скорее всего, были узкие, направленные вниз ноздри – в противоположность ноздрям широконосых обезьян Нового Света (Platyrrhina). Для самок, скорее всего, был характерен настоящий менструальный цикл (ежемесячная овуляция), который наблюдается у человекообразных обезьян и обезьян Старого Света, но которого нет у обезьян Нового Света. Вероятно, у сопредка № 5 слуховой проход был обрамлен трубкой барабанной кости, поддерживающей барабанную перепонку, тогда как у обезьян Нового Света барабанная перепонка поддерживается кольцом, и трубки у них нет.

Был ли у сопредка № 5 хвост? Скорее всего, да. Поскольку отсутствие хвоста – это самый наглядный признак человекообразных обезьян, очень хочется сделать вывод, что разделение двух ветвей 25 млн лет назад совпадает со временем утраты хвоста. На самом деле сопредок № 5 был, по-видимому, хвостатым, как и почти все млекопитающие, а сопредок № 4 – бесхвостым, как и все его потомки, современные человекообразные обезьяны. Но в какой момент между сопредками №№ 4 и 5 утрачен хвост, мы не знаем. Это, впрочем, не так важно: мы же не думаем, что обычная обезьяна, утратив хвост, вдруг стала человекообразной. Африканский ископаемый род Proconsul, например, тоже вполне может считаться человекообразной, а не обычной, обезьяной, потому что после разделения двух ветвей в момент рандеву № 5 он оказался на стороне человекообразных обезьян. Но то, что он относится к линии человекообразных обезьян, еще не проясняет вопрос о наличии хвоста. (Данные в совокупности указывают на то, что у проконсула хвоста не было.)

Как же называть животных, которые жили между сопредком № 5 и проконсулом и еще не утратили хвост? Строгий последователь кладистического подхода назвал бы их человекообразными обезьянами, потому что они принадлежат к их ветви. Какой-нибудь другой специалист по систематике назвал бы их обычными обезьянами, потому что у них есть хвост. А я повторю: глупо зацикливаться на названиях.

Обезьяны Старого Света, Cercopithecidae, образуют кладу, то есть группу, которая включает всех потомков одного предка. А вот обезьяны как таковые (monkeys), к которым относятся обезьяны Старого Света и обезьяны Нового Света, кладу не образуют, потому что происходят от разных предков. Обезьяны Старого Света ближе к человекообразным обезьянам, чем к обезьянам Нового Света. Вместе с человекообразными обезьяны Старого Света образуют группу узконосые обезьяны (Catarrhini). И, наконец, все три группы – обезьяны Старого Света, обезьяны Нового Света и человекообразные – составляют кладу Anthropoidea. Обезьяны Старого и Нового Света (monkeys) образуют искусственную (парафилетическую) группу, потому что она включает всех широконосых и отчасти узконосые обезьяны – за исключением человекообразных. Вообще обезьян Старого Света было бы удобнее называть хвостатыми человекообразными обезьянами. Как я уже говорил, Catarrhme означает “направленный вниз нос”. В этом отношении мы – достойные представители Catarrhme. Вольтеровский доктор Панглосс как-то заметил, что “носы созданы для очков, вот мы и стали носить очки”. Он мог бы добавить, что наши направленные вниз ноздри препятствуют попаданию в нос дождя. А Platyrrhme означает “плоский (широкий) нос”. Таким образом, носы стали не только отличительным признаком двух крупнейших групп приматов, но и дали им названия.

Рандеву № 6

Обезьяны Нового Света

Рандеву № 6 назначено около 40 млн лет назад. Здесь широконосые обезьяны Нового Света (Platyrrhini) встречаются с нами, людьми, и с первым антропоидом – сопредком № 6, нашим прародителем примерно в трехмиллионном поколении. Землю покрывали густые тропические леса, и даже Антарктида (по крайней мере частично) была зеленой. Хотя сейчас все широконосые обезьяны живут в Южной или Центральной Америке, рандеву № 6 почти наверняка произошло не там. Полагаю, это случилось в Африке. Группа приматов с плоским носом, не оставивших в Африке ныне живущих потомков, перебралась в Южную Америку от 25 млн лет (к этому времени относятся первые ископаемые южноамериканские обезьяны) до 40 млн лет назад (рандеву № 6). В то время Южная Америка и Африка находились друг к другу ближе, чем теперь, а уровень моря был ниже. Поэтому между Западной Африкой и Южной Америкой могла существовать цепь островов, и обезьяны переправлялись с одного острова на другой на плотах из фрагментов мангровых растений – на них вполне можно жить некоторое время. Направления течений в те времена были подходящими для таких спонтанных путешествий. Другая крупная группа животных, дикобразоподобные грызуны ((Hystncognatha), судя по всему, прибыла в Южную Америку примерно тогда же. Причем, похоже, они тоже эмигрировали из Африки: их даже назвали в честь африканского дикобраза – Hystnx. Возможно, обезьяны переправились в Африку по той же цепи островов, что и грызуны, и пользовались теми же течениями. Хотя они путешествовали, вероятно, на разных плавсредствах.

Значит ли это, что приматы Нового Света произошли от одной-единственной предковой популяции, эмигрировавшей из Африки?

Рис.20 Рассказ предка. Паломничество к истокам жизни

Широконосые обезьяны. Филогенетическое древо примерно для ста видов обезьян Нового Света. Филогения обезьян до сих пор вызывает разногласия, и я привожу общепринятую схему.

На рис. (слева направо): золотистая игрунка (Leontopithecus rosalia); мирикина (Aotus trivirgatus); беличий саймири, или обыкновенная беличья обезьяна (Saimiri sciureus); черный ревун (Alouatta caraya); саки-монах (Pithecia monachus).

Или приматы переправлялись с материка на материк неоднократно? А если так, можно ли это доказать? Если говорить о грызунах, то в Африке до сих пор живут дикобразоподобные грызуны – в том числе африканские дикобразы, землекоповые, скальные крысы и камышовые хомячки. Если бы оказалось, что некоторые южноамериканские грызуны – близкие родственники одной африканской группы (например дикобразов), а другие – близкие родственники другой (например землекоповых), это явилось бы доказательством того, что грызуны эмигрировали в Южную Америку не однажды. Однако не похоже, что южноамериканские грызуны происходят от разных предков, и, скорее всего, миграция грызунов стала однократным событием. Впрочем, это доказательство не то чтобы очень убедительно. Что касается приматов Южной Америки, то они тоже гораздо ближе друг к другу, чем к любому африканскому примату. Это говорит и о том, что с высокой вероятностью волна миграции приматов была единичной. Но, опять-таки, это не самое убедительное доказательство.

Пользуясь случаем, напомню, что неправдоподобие истории о переправе на плотах – еще не повод сомневаться в ней. Странно, правда? Ведь в обыденной жизни все наоборот: чем невероятнее история, тем больше у нас оснований полагать, что она не могла произойти. Однако с вопросом межконтинентальной переправы обезьян, грызунов или кого угодно дело обстоит немного иначе. Ведь переправа должна была произойти лишь однажды, а времени на это было гораздо больше, чем мы можем представить. Вероятность того, что плот с беременной самкой обезьяны достиг противоположного берега, составляет 1: 10000. В рамках человеческой жизни такая вероятность равна нулю. Однако если в нашем распоряжении 10 млн лет, это событие становится почти неизбежным. Оно должно было произойти всего один раз, а после этого все было просто. Счастливая самка родила детей, и они основали династию, которая в итоге дала все разнообразие обезьян Нового Света. Пословица гласит, что большие дубы вырастают из маленьких желудей.

Как бы то ни было, случайные переправы на плотах не так уж редки. Мелких животных довольно часто можно увидеть дрейфующими по морю. А иногда – не очень маленьких. Длина зеленой игуаны может достигать метра, а то и двух. Процитирую заметку Элен Ценски и ее соавторов, опубликованную в журнале “Нейчур”:

Четвертого октября 1995 года не менее пятнадцати особей зеленой игуаны (Iguana iguana) появилось на восточном побережье карибского острова Ангилья. Ранее этот вид на острове не встречался. Игуаны прибыли на плоту из вырванных с корнем деревьев (длина некоторых превышала девять метров). Местные рыбаки говорят, что плот был очень велик, и им потребовалось два дня, чтобы разобрать его. Они рассказали, что видели игуан на берегу и на плавающих стволах в бухте.

По-видимому, игуаны, жившие на другом острове, устроились на ночлег в деревьях, которые унес в море ураган – либо “Луис”, пронесшийся над Восточными Карибами 4–5 сентября, либо “Мэрилин”, который бушевал две недели спустя. Ни один из этих ураганов не прошел над Ангильей. Впоследствии Ценски и ее коллеги ловили или наблюдали зеленых игуан на Ангилье и на островке в полукилометре от берега. В 1998 году популяция зеленых игуан, включавшая по меньшей мере одну фертильную самку, еще обитала на Ангилье. Заметим, что игуаны и родственные им ящерицы отлично колонизируют острова. Игуаны обитают даже на Фиджи и Тонга – а ведь эти места гораздо труднодоступнее, чем острова Вест-Индии.

Кроме передвижения по ветвям на четырех конечностях, как делают многие обезьяны Старого Света, некоторые обезьяны Нового Света умеют висеть на ветках, как гиббоны, и даже пользоваться брахиацией. У всех обезьян Нового Света длинный хвост, а у паукообразных обезьян, шерстистых обезьян и ревунов он очень цепкий и служит дополнительной конечностью. Эти обезьяны могут спокойно висеть на одном хвосте – или на руке, ноге и хвосте (в любом сочетании). Наблюдая за паукообразной обезьяной, так и ждешь, что на конце ее хвоста найдутся несколько цепких пальцев[17].

Среди обезьян Нового Света есть виртуозные прыгуны. Кроме того, здесь обитают совиные обезьяны – единственная группа антропоидов, ведущая ночной образ жизни (у них большие, как у кошек или сов, глаза – таких нет больше ни у кого из обезьян Старого или Нового Света), и карликовые игрунки размером с соню – самые мелкие из антропоидов. Однако самые крупные из обезьян Нового Света – обезьяны-ревуны – по размеру напоминают крупных гиббонов. Ревуны похожи на гиббонов способностью раскачиваться на руках. Кроме того, и ревуны, и гиббоны – очень шумные животные. Однако если крики гиббонов напоминают сирены полицейских машин, то группа ревунов с их раздутыми горловыми мешками, которые служат резонаторами, скорее напоминает эскадрилью реактивных истребителей, с ревом несущихся над деревьями.

Рассказ Ревуна[18]

Новые гены появляются не из воздуха. Они образуются при дупликации прежних генов. После этого каждый из них идет своим путем, приобретая мутации и подвергаясь действию естественного отбора и дрейфа генов. Обычно мы не видим, как это происходит, но, подобно следователям на месте преступления, можем попытаться воссоздать произошедшее на основе улик. Замечательный пример – гены, ответственные за цветовое зрение.

Млекопитающие очень долго были ночными существами. День принадлежал динозаврам, у которых, если судить по ныне живущим родственникам, было отличное цветовое зрение. Также не без оснований можно предположить, что цветовое зрение имелось и у далеких предков млекопитающих – звероподобных рептилий (тероморфов), населявших Землю до динозавров. Однако за время, которое млекопитающие провели во тьме, их глаза должны были научиться улавливать каждый доступный фотон. Неудивительно, что способность различать цвета они почти утратили (о причинах мы поговорим в “Рассказе Слепой пещерной рыбы”). До сих пор у большинства млекопитающих (даже тех, которые вернулись к дневному образу жизни) слабое цветовое зрение – двухроматическое. Речь о количестве типов светочувствительных клеток – колбочек – в сетчатке. У человека и остальных узконосых обезьян, а также у обезьян Старого Света, три типа колбочек: красные, зеленые и синие. То есть у нас зрение трихроматическое. Однако есть данные, что мы заново приобрели третий тип колбочек после того, как его утратили наши ночные предки. У большинства других позвоночных, например рыб или рептилий (но не млекопитающих!), зрение трихроматическое (имеются колбочки трех типов) или тетрахроматическое (четыре типа). У птиц и черепах зрение бывает еще сложнее. Что касается обезьян Нового Света, особенно ревунов, то они в особенном положении.

Есть указания на то, что австралийские сумчатые, в отличие от большинства млекопитающих, обладают хорошим трихроматическим зрением. Кэтрин Аррес и ее коллеги, открывшие его у поссумов-медоедов и австралийских сумчатых землероек (такое зрение было найдено и у кенгуру-валлаби), предположили, что австралийские (но не американские) сумчатые сохранили древний светочувствительный пигмент рептилий, утраченный остальными млекопитающими. Однако в целом у млекопитающих все-таки самое слабое среди позвоночных цветовое зрение. Большинство млекопитающих если и различает цвета, то примерно на уровне страдающих дальтонизмом людей. Любопытные исключения из этого правила можно найти среди приматов. Неслучайно они чаще других млекопитающих используют для брачной демонстрации яркие цвета.

Австралийские сумчатые, в отличие от нас, видимо, никогда не теряли цветовое зрение. Мы же, судя по своим родственникам среди млекопитающих, скорее всего, не унаследовали от рептилий трихроматическое зрение, а заново изобрели его. Причем два раза: первый раз это сделали обезьяны Старого Света и человекообразные обезьяны, а второй – ревуны (только они, а не все обезьяны Нового Света). Цветовое зрение ревунов похоже на цветовое зрение человекообразных обезьян, однако отличается от него достаточно, чтобы понять: возникло оно независимо.

Что же такого хорошего в цветовом зрении, что трихроматизм возник независимо у обезьян Старого и Нового Света? Основная гипотеза гласит, что цветовое зрение связано с питанием фруктами. На фоне однотонной зеленой листвы фрукты выделяются. Это, в свою очередь, не случайно. Фрукты скорее всего приобрели яркие цвета для привлечения поедающих плоды животных, например обезьян, которые играют важную роль в распространении семян. Кроме того, трихроматическое зрение помогает находить на фоне темной листвы более молодые и мясистые листья (которые бывают бледно-зелеными, иногда даже красными). Впрочем, последнее вряд ли идет на пользу растениям.

Цвет завораживает нас. Слова, обозначающие цвета – первые прилагательные, которые узнают дети, и именно эти слова они раньше всего пытаются связать с каким-нибудь подходящим существительным. Но мы редко вспоминаем, что цвета и оттенки, которые мы видим – это ярлыки, которые наше сознание навешивает на участки спектра, слегка различающиеся длиной электромагнитных волн. Красный свет соответствует длине волны около 700 нм, фиолетовый – около 420 нм. При этом видимое излучение в этих рамках составляет ничтожную часть спектра. Ведь длина волны может варьировать от нескольких километров (некоторые радиоволны) до долей нанометра (гамма-излучение).

Все глаза на планете устроены так, чтобы воспринимать волны тех длин, в которых наша звезда ярче всего и которые проходят сквозь земную атмосферу. Однако способность глаза к восприятию электромагнитных волн ограничена биохимическими системами, необходимыми для улавливания размытого диапазона излучения. Законы физики устанавливают для видимого диапазона длин волн более четкие границы. Ни одно животное не воспринимает всю инфракрасную область спектра. Ближе всего подошли к этому гремучие змеи. У них на голове есть ямки, которые хотя и не могут создавать сфокусированное изображение в инфракрасном диапазоне, дают змеям некоторую направленную чувствительность к теплу, исходящему от добычи. Также ни одно животное не может воспринимать весь диапазон ультрафиолетовой части спектра, хотя некоторые животные, например пчелы, видят в ультрафиолете немного лучше нас. Зато пчелы не видят “нашего” красного цвета: для них он инфракрасный. В целом для животных “свет” – это узкий спектр электромагнитных волн между короткими волнами ультрафиолетового излучения и длинными – инфракрасного. Различие между пчелами, людьми и змеями лишь в том, где проходят границы воспринимаемого спектра.

Более узки эти границы для каждого типа светочувствительных клеток сетчатки. Одни колбочки немного лучше воспринимают красный участок спектра, другие – синий. Цветовое зрение представляет собой сопоставление данных, полученных от различных колбочек, и качество такого зрения сильно зависит от того, сколько типов колбочек в сетчатке. В сетчатке животных с дихроматическим зрением – два типа колбочек, трихроматическим зрением – три, тетрахроматическим зрением – четыре. Каждая колбочка характеризуется кривой чувствительности, у которой есть пик и не очень симметричные “угасающие” концы. За пределами, очерченными этой кривой, клетка “слепа”.

Допустим, колбочка имеет пик в зеленой части спектра. Значит ли это, что такая клетка посылает сигналы в мозг лишь тогда, когда она “смотрит” на зеленый объект, например на траву или бильярдный стол? Безусловно, нет. Просто клетке необходимо больше красного света (в этом случае), чтобы выдавать импульсы той же интенсивности, как при заданном количестве зеленого света. Такая клетка будет одинаково реагировать как на яркий красный свет, так и на тусклый зеленый[19]. Нервная система может определить цвет объекта лишь путем сопоставления одновременно поступающих импульсов по меньшей мере от двух клеток, чувствительных к разным участкам спектра. Каждая клетка при этом “контролирует” другую. Если же клеток не две, а три, представление о цвете окажется еще полнее.

Цветное телевидение и компьютерные мониторы работают в трехцветной системе, потому что были разработаны для трихроматических глаз. В обычном мониторе каждый пиксель состоит из трех точек, расположенных настолько близко друг к другу, что глаз не может их различить. Каждая точка всегда светится одним цветом. Посмотрев на экран под достаточно большим увеличением, мы увидим одни и те же три цвета – обычно красный, зеленый и синий, хотя иногда могут использоваться и другие комбинации. Любой оттенок можно получить, регулируя интенсивность свечения трех основных цветов. Должно быть, черепах с их тетрахроматическим зрением наши телевизоры разочаровывают.

Сопоставляя интенсивность импульсов всего от трех типов колбочек, наш мозг может воспринимать огромный диапазон оттенков. Но большинство плацентарных млекопитающих обладает дихроматическим зрением: в их сетчатке колбочки двух типов. У колбочек одного типа пик восприимчивости в фиолетовой области спектра (в некоторых случаях – в ультрафиолетовой), у второго типа – где-то между зеленой и красной областями. У нас, животных с трихроматическим зрением, пик “коротковолновых” колбочек находится между фиолетовой и синей областями спектра. Такие колбочки называют синими… Другие два типа наших колбочек – так называемые зеленые и красные. Правда, даже у красных колбочек пик приходится скорее на желтоватую, чем на красную часть спектра. Но в целом кривая их чувствительности сдвинута в красную часть спектра. Так что, несмотря на то, что пик в желтой области, эти колбочки все равно генерируют сильный импульс в ответ на красный свет. Поэтому, если вычесть интенсивность импульса от зеленых колбочек из интенсивности импульса красных колбочек, мы получим особенно сильный сигнал в ответ на красный свет.

Кроме колбочек, в сетчатке еще есть палочки – светочувствительные клетки, которые отличаются от колбочек формой и особенно эффективны ночью. В цветовом зрении эти клетки не участвуют, и мы больше не будем о них говорить.

Химия и генетика цветового зрения довольно хорошо изучены. Главными молекулярными акторами здесь выступают опсины. Это молекулы белка, которые в колбочках и палочках выполняют функцию зрительных пигментов. Каждая молекула опсина связана с одной молекулой ретиналя – химического соединения, которое является производным витамина А [20]. Молекула ретиналя скручена в петлю, которая встраивается в молекулу опсина. При попадании фотона с подходящей длиной волны узел распрямляется. Это служит сигналом для клетки: она посылает нервный импульс, который говорит мозгу: “Вижу свет своего типа”. Тогда молекула опсина связывается с новой скрученной молекулой ретиналя, поступающей из внутриклеточных запасов.

Не все молекулы опсина одинаковы. Опсины, как и все белки, кодируются генами. Различия в ДНК приводят к образованию опсинов, чувствительных к разным цветам, и это служит генетической основой дихроматического и трихроматического зрения. А поскольку каждая клетка организма имеет полный набор генов, различия между красными и синими колбочками не в том, какие гены у них есть, а в том, какие гены работают. На этот счет есть правило: каждая колбочка включает лишь один тип генов.

Гены, кодирующие наши зеленый и красный опсины, очень похожи друг на друга и находятся на Х-хромосоме (половая хромосома, которая у женщин есть в двух копиях, у мужчин – в одной). Ген, отвечающий за образование синего опсина, немного от них отличается и находится не на половой хромосоме, а на одной из обычных хромосом, которые называют аутосомами (в нашем случае это седьмая хромосома). Наши зеленые и красные клетки явно образовались в результате недавней дупликации гена, который, в свою очередь, задолго до этого образовался в результате дупликации гена синего опсина. Тип зрения животного – дихроматический или трихроматический – зависит от того, сколько разных генов опсинов у него в геноме. Если в геноме животного есть, например, гены синего и зеленого опсинов, но отсутствует ген красного опсина, такое животное будет дихроматом.

Прежде чем заняться ревунами и историей приобретения ими трихроматического зрения, попытаемся понять, как устроено странное для нас дихроматическое зрение остальных обезьян Нового Света. Кстати, дихроматическое зрение есть у некоторых лемуров, но не у всех обезьян Нового Света (у ночных обезьян зрение монохроматическое). Так что пока забудем о ревунах и других необычных видах.

Во-первых, исключим из обсуждения “синий” ген, который находится на аутосомах всех особей независимо от пола. С “красными” и “зелеными” генами на Х-хромосоме все сложнее и гораздо интереснее. На каждой Х-хромосоме есть только один локус, в котором может находиться красный или зеленый аллель[21]. Поскольку у самки две Х-хромосомы, она может обладать и красным, и зеленым аллелями одновременно. Однако у самца с его единственной Х-хромосомой может быть лишь один аллель: красный либо зеленый. Таким образом, типичный самец обезьяны Нового Света должен обладать дихроматическим зрением, потому что у него колбочки лишь двух типов: синие плюс красные либо зеленые. По нашим меркам, все эти самцы – дальтоники. Однако это дальтоники двух типов: у одних самцов в популяции нет зеленого опсина, у других – красного. Синий есть у всех.

Самкам теоретически повезло больше. Поскольку у них две Х-хромосомы, они могут оказаться счастливыми обладателями красного аллеля на одной хромосоме и зеленого аллеля – на другой (плюс, конечно, синий аллель). Такая самка будет обладать трихроматическим зрением[22]. У менее удачливой самки может оказаться два красных или два зеленых аллеля, и тогда ее зрение будет дихроматическим. По нашим меркам такие самки тоже будут дальтониками и тоже, как и в случае с самцами, дальтониками двух типов.

Поэтому популяции обезьян Нового Света, например тамаринов или беличьих обезьян (саймири), представляют собой странную смесь. Все самцы и некоторые самки обладают дихроматическим зрением, то есть они дальтоники, причем двух типов. Некоторые самки – но не самцы – обладают полноценным трихроматическим зрением, которое предположительно похоже на наше. Эксперименты, в ходе которых тамарины искали еду в замаскированных коробках, показали, что особи с трихроматическим зрением делают это успешнее, чем особи с дихроматическим зрением. Возможно, что, выходя на поиски пищи, стаи обезьян Нового Света полагаются на счастливых обладательниц трихроматического зрения. С другой стороны, возможно, обладатели дихроматического зрения, поодиночке или в компании с “дальтоником” другого типа, могут обладать неожиданными преимуществами. Говорят, во время Второй мировой войны в экипажи бомбардировщиков включали одного дальтоника, потому что он мог различить некоторые виды маскировки лучше товарищей-трихроматов. Эксперименты подтверждают, что люди с дихроматическим зрением распознают некоторые типы камуфляжа, способные обмануть людей с полноценным зрением. Так что, возможно, группа обезьян, состоящая из обладателей трихроматического зрения и “дальтоников” двух типов, найдет больше фруктов, чем группа, состоящая лишь из животных с трихроматическим зрением. Звучит надуманно, но смысл в этом есть.

Гены красного и зеленого опсинов у обезьян Нового Света представляют собой пример полиморфизма. Это одновременное существование в популяции двух или более альтернативных версий гена. При этом ни одна из версий не должна быть слишком редкой, то есть представлять собой результат недавней мутации. Известный принцип эволюционной генетики гласит: полиморфизм, подобный этому, не возникает без причины. Если бы он возникал просто так, в конце концов обезьян с красным аллелем стало бы больше, чем обезьян с зеленым аллелем, – или наоборот. Какой именно аллель получил бы преимущество, мы не знаем, но вероятность того, что оба оказались бы одинаково полезны, очень мала. Так что в итоге худший из них обязательно был бы отсеян.

Существование в популяции стабильного полиморфизма говорит о том, что он нужен. Но зачем? На этот счет существует две гипотезы, и каждая в нашем случае вполне применима. Это частотно-зависимый отбор и гетерозиготное преимущество. Явление частотнозависимого отбора наблюдается тогда, когда преимущество получает более редкий тип – просто потому, что он более редкий. При этом по мере вымирания менее предпочтительного типа он становится все более редким – и тогда получает преимущество. Допустим, что обезьяны с красным аллелем особенно хорошо различают красные фрукты, а с зеленым аллелем – зеленые. Если в популяции преобладают обезьяны с красным аллелем, все красные фрукты скоро будут съедены, и тогда преимущество получит одинокая обезьяна с зеленым аллелем, которая умеет находить зеленые фрукты. И наоборот. Хотя эта история звучит не слишком правдоподобно, она служит примером условий, необходимых для сохранения в популяции обоих типов. Эти необходимые условия в целом напоминают историю с летчиками-дальтониками.

Теперь обратимся к явлению гетерозиготного преимущества. Классическим примером выступает серповидноклеточная анемия у человека. Ген серповидноклеточной анемии плох тем, что у индивидов, имеющих две его копии (то есть у гомозигот по этому гену), эритроциты деформируются и становятся похожими на серпы. Такие люди страдают от тяжелой формы анемии. Однако у этого гена есть и плюсы: люди, имеющие лишь одну его копию (то есть гетерозиготы по этому гены), обладают устойчивостью к малярии. В тех районах, где распространена малярия, польза от этого гена перевешивает его вред, и ген серповидноклеточной анемии сохраняется в популяции, несмотря на пагубное воздействие на тех, кому не посчастливилось иметь две его копии[23]. Профессор Джон Моллон и его коллеги многое сделали для понимания полиморфной системы цветового зрения у обезьян Нового Света. Они полагают, что гетерозиготного преимущества, которым обладают самки с трихроматическим зрением, достаточно для сохранения красных и зеленых аллелей в популяции. Но еще лучшим примером в этом смысле является ревун.

Ревуны ловко пользуются преимуществами обоих механизмов полиморфизма, объединив их на одной хромосоме благодаря удачной транслокации (это особый вид мутации). При транслокации происходит перенос участка хромосомы на другую хромосому – или в другое место на той же хромосоме. Похоже, именно это произошло у предка ревунов. В результате оба аллеля – и красный, и зеленый – оказались рядом на одной Х-хромосоме. Даже если этот предок был самцом, указанная транслокация послужила отправной точкой для эволюционного развития трихроматического зрения. Со временем мутантная Х-хромосома распространялась в популяции, и теперь она есть в геноме у всех ревунов.

Ревунам было легко проделать этот эволюционный фокус, потому что генофонд популяции обезьян Нового Света уже содержал все три аллеля гена опсина. Просто в геноме каждой обезьяны, за исключением некоторых удачливых самок, было только два аллеля. Между тем у человекообразных обезьян и обезьян Старого Света трихроматическое зрение возникло по-другому. Наши дихроматические предки не делились на два типа, то есть в их популяции не было полиморфизма. Есть основания полагать, что удвоение гена опсина на Х-хромосоме наших предков было настоящей дупликацией. Первый мутантный предок оказался обладателем двух тандемных (то есть расположенных рядом) копий одного и того же аллеля – например зеленого. Поэтому он, в отличие от мутантного предка ревунов, не стал внезапным обладателем трихроматического зрения. У него было обычное дихроматическое зрение, обусловленное одним синим и двумя зелеными аллелями. Трихроматическое зрение у обезьян Старого Света формировалось постепенно, в ходе последующей эволюции. Поколение за поколением естественный отбор благоприятствовал расхождению цветовой чувствительности двух опсиновых аллелей на Х-хромосоме, что привело к образованию зеленого и красного аллелей.

При транслокации переносу подвергается не один ген, а сразу несколько. И иногда его спутники – соседи по хромосоме, перемещающиеся вместе с ним на новую хромосому, – могут рассказать кое-что интересное. Это именно такой случай. Ген Alu известен как “мобильный генетический элемент”: это короткий вирусоподобный участок ДНК, который размножается в геноме как своего рода паразит, использующий клеточный механизм репликации ДНК. Участвовал ли Alu в перемещении опсина? Похоже, что так. Изучив геном, мы можем найти неопровержимые доказательства. На обоих концах дуплицированного участка находятся гены Alu. Возможно, дупликация была случайным побочным эффектом репродукции “паразитического” элемента. В геноме некоей эоценовой обезьяны рядом с геном опсина имелся паразитический элемент. Во время самовоспроизведения он случайно реплицировал гораздо больший, чем нужно, участок ДНК и так создал предпосылку к появлению у нас цветового зрения. Тут возникает искушение сделать вывод, что если геномный паразит случайно оказал нам услугу, значит, геномы предоставляют убежище паразитам в надежде на гипотетическую пользу. Но это не так. Естественный отбор так не работает.

Ошибки копирования, подобные описанной, могут иногда происходить без участия Alu. Например, когда две Х-хромосомы объединяются перед кроссинговером, они с некоторой вероятностью могут сделать это неправильно. И тогда вместо правильного выравнивания (красный аллель на одной хромосоме встает напротив такого же красного аллеля на другой хромосоме) красный аллель оказывается, например, напротив зеленого. Происходит это из-за сходства аллелей. Если за такой ошибкой следует кроссинговер, он получается “неравным”: на одной хромосоме может оказаться лишний зеленый ген, а на другой – ни одного. Но даже если кроссинговер не происходит, может наблюдаться “конверсия генов”. При конверсии генов короткая последовательность на одной хромосоме превращается в соответствующую последовательность на другой. При ошибочном выравнивании хромосом участок красного аллеля может заменить соответствующий участок зеленого аллеля – и наоборот. Таким образом, к “красно-зеленому” дальтонизму может привести как неравный кроссинговер, так и конверсия генов при ошибочном выравнивании хромосом.

Красно-зеленым дальтонизмом (то есть неспособностью различать красный и зеленый цвета) чаще страдают мужчины, чем женщины. Ну, не то чтобы они страдали, однако это причиняет определенное неудобство: дальтоникам предположительно недоступны некоторые эстетические удовольствия. У мужчин, в отличие от женщин, нет запасной Х-хромосомы, которая могла бы заменить дефектную. Никто не знает, видят ли дальтоники кровь и траву такими же, как мы. Возможно, это зависит от человека. Мы знаем лишь, что людям с красно-зеленым дальтонизмом предметы цвета травы кажутся примерно такими же, как предметы цвета крови. В человеческой популяции дихроматический дальтонизм наблюдается примерно у 2 % мужчин. Кстати, не путайте дихроматический дальтонизм с другими видами красно-зеленого дальтонизма, которые встречаются гораздо чаще (примерно у 8 % мужчин). Таких людей называют аномальными трихроматами: хотя генетически они являются трихроматами, опсины одного из трех типов у них не работают[24]

Страницы: «« 123

Читать бесплатно другие книги:

Не стоит недооценивать врага. Даже поверженный, он способен на неприятные сюрпризы. Вот и ты слишком...
Гражданская война 1918–1920 гг. – одно из важных и трагических событий отечественной истории. Эта те...
В сборнике содержится восемь акафистов, которые должны помочь читателю в молитвенной заботе о своем ...
Люди всегда жаждут большего. Почета, богатства, славы, силы… А потому успешно начавшаяся завоеватель...
Книга основана на материалах цикла передач «Пастырские беседы», которые в течение многих лет проводя...
В книгу вошли статьи известных ученых, доказывающих правдивость библейских историй с научной точки з...