Эволюция. Классические идеи в свете новых открытий Марков Александр

В отличие от «Евгения Онегина» биологические тексты редко бывают совершенными[23]. К тому же мир имеет обыкновение меняться. То, что было превосходным вчера, сегодня уже устарело и никуда не годится. Если вчера пределом мечтаний считалось обладание игровой приставкой, то сегодня продвинутый подросток должен иметь последнюю модель айпада (кое-кто из отставших и устаревших уже путают айпад и айпод). Так и в мире природы – меняется биологическое окружение, климат, очертания континентов, и нужно постоянно им соответствовать… Правда, в природе перемены обычно происходят медленнее, чем в современной моде и технологиях, но из этого правила тоже есть исключения.

Итак, мутации – случайные изменения ДНК – бывают полезными. Процесс приспособления неостановим и бесконечен. Но общие рассуждения, как бы громко, уверенно и веско они ни были высказаны, не убедят нашего вдумчивого и скептического читателя. Поэтому постараемся показать на простых примерах, что полезные мутации – это повседневная реальность. В этой главе мы познакомим читателя с несколькими ясными случаями.

Один верный шаг – и на полях вырастает рис

Ключевым моментом в доместикации риса (как и многих других злаков) было появление разновидности с неопадающими семенами. Это позволило древним земледельцам не подбирать зрелые зерна с земли, а срезать их со стеблями и сократить потери при сборе урожая. Предком культурного риса (Oryza sativa) был дикорастущий вид с опадающим семенами O. nivara или близкий к нему O. rufipogon (или, возможно, оба этих вида).

Опадение семян зависит от гена sh4. Для дикого риса O. nivara характерен доминантный аллель[24] этого гена, соответствующий опадающим семенам. Очевидно, что в дикой природе полезны именно опадающие семена. Рецессивный аллель, характерный для домашнего риса, обеспечивает неопадающие семена. В 2006 году ученым из Мичиганского университета (США) удалось выяснить, какую функцию выполняет кодируемый этим геном белок и как он контролирует опадение семян (Li et al., 2006). Обычно в том месте, где должно произойти отделение (например, спелых плодов или отслуживших листьев), формируется «отделительный слой» из клеток особого строения. У дикого риса между зерном и плодоножкой тоже образуется отделительный слой, состоящий из мелких тонкостенных клеток. У культурного риса этот слой формируется только частично, поэтому зерно остается прочно прикрепленным к плодоножке. Так вот, выяснилось, что ген sh4 экспрессируется там и только там, где формируется отделительный слой. Значит, sh4 участвует в организации функционального отделительного слоя. У культурного риса его функциональность нарушилась, и рис приобрел нужные земледельцу свойства.

В последовательности этого гена, расположенного на четвертой хромосоме, удалось определить нужную мутацию. Оказалось, что это одна-единственная нуклеотидная замена: тимин (T) дикого риса заменился на гуанин (G) домашнего, что привело к замене аминокислоты лизина на аспарагин в соответствующем белке. Неужели всего одна аминокислота – и такой чудесный результат? Именно так. И чтобы не было сомнений – а они всегда остаются, пока не выполнишь проверку или не заглянешь в ответы в конце задачника, – ученые ввели в геном культурного риса «дикий» вариант гена sh4. У культурного риса созрели колосья с неудобными, опадающими семенами.

Исследование показало, что доместикация риса была связана с отбором растений, несущих мутантный вариант гена sh4. Мутация немного «подпортила» механизм формирования отделительного слоя, хотя и не вывела его из строя полностью, иначе отделительный слой не формировался бы вовсе, что создало бы большие проблемы при обмолоте. По-видимому, небольшие изменения регуляторных генов сыграли важную роль и в доместикации других растений. Соответствующие данные уже имеются, например, по кукурузе и томатам.

Итак, вот первый конкретный пример полезной мутации. Кстати, почему мы говорим, что она была полезной? Для дикого риса мутация, не позволяющая созревшему зерну своевременно отделиться от колоса, была бы однозначно вредна – она снизила бы число посеянных семян, т. е. снизила эффективность размножения. Но «ландшафт приспособленности» изменился для риса, когда его размножение (сбор урожая и сев) взяли в свои руки земледельцы. Теперь семена, прочно держащиеся в колосе, получили больше шансов добраться до мест обмолота, а значит, быть посеянными и дать потомство. Бессознательный отбор, осуществлявшийся ранними земледельцами, дал преимущество мутантным растениям с неопадающими семенами, т. е. сделал растения с этим признаком более приспособленными по сравнению с «диким типом» – растениями с опадающими семенами. Это, собственно, и означает, что мутация, мешающая семенам опадать и вредная для диких злаков, стала полезной для тех растений, размножение которых люди взяли в свои руки.

Можно также заметить, что новый полезный признак – между прочим, признак важный, составляющий главное отличие культурного злака от дикого, – на молекулярном уровне был связан не с созданием чего-то нового, а всего лишь с повреждением, порчей чего-то старого. Мутация повредила механизм формирования отделительного слоя. Это соответствует общепринятому – и в целом верному – представлению о том, что случайные мутации, как и любые «случайные ошибки», с большей вероятностью могут испортить что-то сложное, чем создать. Однако, как видим, повреждение на молекулярном уровне не обязательно сопровождается упрощением на уровне организма. Оно может приводить к появлению новых полезных признаков и обеспечивать адаптацию к меняющимся условиям. Эволюция, как всякий вероятностный процесс, обычно выбирает самые простые (вероятные) пути из всех возможных. Если можно улучшить приспособленность, всего лишь упростив систему (например, выведя из строя какой-то ген), то именно это, скорее всего, и произойдет[25].

Кто-нибудь может подумать, что так просто все получается лишь с искусственным отбором, если в дело вмешивается человек со своим разумением и целеполаганием. Это не так. Есть превосходные примеры полезных мутаций и среди природных объектов. Скажем, таких, как американские белоногие хомячки.

Десять тысяч лет, три нуклеотида и защитная окраска

Американские белоногие хомячки, называемые также оленьими мышами (Peromyscus maniculatus), в норме имеют темную окраску, однако представители этого вида, обитающие в районе с очень светлой почвой (Песчаные Холмы в штате Небраска), окрашены светлее своих сородичей. Хомячки с Песчаных Холмов стали хрестоматийным примером эволюции адаптивных признаков. Этому способствовали два обстоятельства. Во-первых, адаптивность (полезность) светлой окраски не вызывает сомнений: хищные птицы гораздо лучше видят на светлом фоне темного хомячка, чем светлого. Во-вторых, Песчаные Холмы – молодое геологическое образование: они сформировались после отступления ледника около 10 тыс. лет назад. Это дает основания думать, что мы имеем дело с адаптацией, появившейся – в эволюционном масштабе времени – совсем недавно. Однако для понимания механизмов адаптации важно выяснить ее генетические основы.

Известно, что окраска шерсти млекопитающих зависит от распределения двух пигментов: черно-коричневого эумеланина и рыжего феомеланина. Клетки меланоциты, отвечающие за окраску волоса, могут поочередно синтезировать то один, то другой пигмент по мере роста волоса. В результате волос получается неоднородно окрашенным. Часто кончик и основание волоса темные (эумеланиновые), а посередине имеется светлая (феомеланиновая) полоса. И вот любопытно, что же определяет разницу в окраске у темных и светлых хомячков? Если вглядеться попристальней, то окажется, что никаких специальных ухищрений и особой цветовой палитры не требуется. Всего лишь нужно в каждой шерстинке светлых хомячков расширить феомеланиновую полосу. И больше ничего! Элементарно! И вот американские генетики из Гарвардского и Калифорнийского университетов решили изучить, что же стоит за этим элементарным решением (Linnen et al., 2009).

Известно, что на окраску шерсти может влиять ген Agouti. Сигнальный белок, кодируемый этим геном, подает команду меланоцитам синтезировать феомеланин вместо эумеланина. Влияние мутаций Agouti на окраску шерсти подробно изучено на домовых мышах (Mus musculus). Оказалось, что мутанты с отключенным геном Agouti имеют черную окраску, а повышенная активность гена приводит к очень светлой окраске. Светлый аллель – доминантный по отношению к темному.

Чтобы проверить, действительно ли светлая окраска хомячков с Песчаных Холмов определяется доминантной мутацией, ученые скрещивали разномастных родителей. Все потомство от скрещивания получилось светлым, и эта гипотеза подтвердилась.

Дальнейшие эксперименты показали, что непосредственным результатом мутации является повышенная активность Agouti в первую неделю жизни хомячат, т. е. в тот период, когда у них отрастает шерсть. Максимальная активность Agouti приходится на четвертый день жизни как у темных, так и у светлых хомячков, однако абсолютная величина этой активности (измеряемая по количеству матричных РНК, считанных с гена) у светлых особей с Песчаных Холмов в несколько раз выше.

После была проведена весьма трудоемкая и кропотливая работа – секвенирование нуклеотидной последовательности Agouti у сотни хомячков из темных и светлых лабораторных линий, а также у диких зверьков из зоны смешения темной и светлой популяций. В результате было выявлено около 20 полиморфных сайтов, т. е. таких участков гена, которые не у всех особей одинаковы. Существуют эффективные методы статистического анализа нуклеотидных последовательностей, которые позволяют обнаруживать следы действия положительного отбора на те или иные участки генов. Иными словами, отличать изменения ДНК, которые поддерживались отбором (т. е. полезные, адаптивные), от нейтральных изменений, которые распространялись в популяции за счет дрейфа. Применив эти методы, ученые пришли к выводу, что ключевая мутация, в результате которой мыши приобрели светлую окраску, находится только в одном месте, а изменения в остальных 19 полиморфных сайтах тоже внесли свой вклад, но менее значительный.

Эта мутация находилась лишь в одном из 20 сайтов. Она состояла в выпадении трех нуклеотидов, кодирующих аминокислоту серин. Удивительно, что такой важный признак, как маскирующая окраска, может определяться всего тремя нуклеотидами! Какая поразительная несоразмерность: с одной стороны, три молекулы, их даже в микроскоп не видно, а с другой стороны – невидимость для врага, долгая жизнь, многочисленная семья и потомство… Когда сравниваются такие категории, то кажется, что три молекулы – это ничто, не могут они определить хомячьего счастья. Но эта несоразмерность – мнимая.

Следы естественного отбора

Влияние естественного отбора на генофонд популяции трудно наблюдать в природе из-за медленности процесса. Непосредственно наблюдать отбор, действовавший на популяцию в прошлом, и вовсе невозможно без машины времени. К счастью, это и не обязательно, потому что отбор, нацеленный на тот или иной локус (участок молекулы ДНК), оставляет в геномах легкоразличимые следы. Мы можем их увидеть, потому что разрешающая способность молекулярного метода исследования теперь фантастическая – один нуклеотид. Еще 15–20 лет назад это казалось чудом, волшебством. Геномы изучали с помощью скрещиваний мутантов, составляли генные карты, разрешение такого метода было не выше частей хромосом или групп генов, но уж никак не одного нуклеотида. Это все равно что заменить 20-кратную лупу на электронный микроскоп. И если уж эволюционные механизмы работают с наследственным материалом – последовательностями ДНК и РНК, то при такой разрешающей способности молекулярного метода мы это увидим.

Следы работы эволюционных механизмов бывают двух типов. Каждая аминокислота кодируется или одним, или, чаще, несколькими определенными тройками (триплетами) нуклеотидов. Если аминокислота кодируется одним-единственным триплетом, то замена любого нуклеотида в триплете приведет к замене аминокислоты; если она кодируется несколькими триплетами, то замена одного нуклеотида может привести либо к замене аминокислоты, либо к замене триплета другим из возможного набора, а аминокислота останется той же. Замена нуклеотида без замены аминокислоты называется синонимичной, а если аминокислота меняется, то получим несинонимичную, или значимую, замену. Если, сравнивая какой-то ген у двух организмов, мы видим, что среди наблюдаемых различий преобладают значимые замены, это указывает на действие положительного отбора, который поддерживал полезные мутации в этом гене. Если, наоборот, резко преобладают синонимичные замены, а значимых нет или очень мало, – это след отрицательного отбора, который отбраковывал все значимые мутации, потому что они оказывались вредными. Промежуточное соотношение указывает на нейтральную эволюцию. Таким образом, отношение синонимичных и несинонимичных замен свидетельствует о направлении отбора, и это первый тип «следов», оставляемых в геноме естественным отбором.

Рис.7 Эволюция. Классические идеи в свете новых открытий

Пример «селективного выметания». У такс по сравнению с обычными собаками резко понижен генетический полиморфизм на участке третьей хромосомы, включающем ген FGFR3. Это указывает на то, что отбор, осуществлявшийся собаководами, выводившими новую породу коротконогих охотников на лис (было это менее 100 собачьих поколений назад), благоприятствовал какой-то мутации на этом участке хромосомы. В условиях отбора на «таксовость» некая мутация, произошедшая в этом участке, оказалась для собак «полезной», поскольку она обеспечивала успешное размножение, тогда как щенки, не имевшие этой мутации, отбраковывались селекционерами. Что же это за ген – FGFR3? Имеет ли он какое-то отношение именно к таксам? Оказывается, имеет. Белок, кодируемый этим геном, называется рецептором фактора роста фибробластов. Мутации в нем приводят к разнообразным нарушениям развития скелета, в том числе к укорочению конечностей. По рисунку из Pollinger et al., 2005.

Второй тип следов выявляется при изучении уровня полиморфизма (разнообразия) нуклеотидных последовательностей в популяции. Если мы отсеквенируем геномы множества представителей какого-нибудь вида и сравним их между собой, то увидим, что уровень полиморфизма, т. е. индивидуальных различий между геномами, распределен по геному неравномерно. Где-то полиморфизм выше – это те участки генома, в которых большинство мутаций оказываются нейтральными, поэтому полиморфизм свободно накапливается. Скорее всего, это просто не очень нужные участки, «генетический балласт». Где-то генетическое разнообразие ниже – это важные участки генома, в которых большинство мутаций оказываются вредными и удаляются очищающим отбором. Ну а в некоторых местах – и это самое интересное – мы увидим резкое, чуть не до нуля, снижение полиморфизма. В таких участках нет (или очень мало) не только значимых, но и синонимичных различий. Как правило, это означает, что здесь поработала «метла» положительного отбора. Это явление так и называют – selective sweep, т. е. «выметание посредством отбора». В середине участка с резко пониженным полиморфизмом обычно сидит какая-то полезная мутация. Она возникла не очень давно у какой-то особи, а потом быстро распространилась под действием положительного отбора. Вместе с мутацией автоматически распространялись и прилегающие к ней участки ДНК. Это явление называют сцепленным наследованием. До появления полезной мутации уровень полиморфизма в данном участке хромосомы был, скорее всего, примерно таким же, как на соседних участках. Но, когда отбор начинает распространять полезную мутацию, он автоматически распространяет и ее окружение со всеми индивидуальными (и в основном нейтральными) особенностями, присущими вовлеченному в сценарий участку ДНК. Повезет тем нейтральным аллелям, которые находились рядом с полезной мутацией. Остальные нейтральные вариации исчезнут из генофонда, а выживут те, что были у счастливого обладателя первого экземпляра мутантного гена. Как будто все варианты, кроме одного, из данного фрагмента генома «выметаются».

Со временем следы метлы стираются за счет накопления новых нейтральных мутаций. Таким образом, глубокие ямы на графике распределения полиморфизма указывают на относительно недавние случаи действия положительного отбора.

Как в первую неделю жизни хомячат работает мутантный сигнальный белок Agouti – пока неизвестно. Зато удалось показать, что данная мутация, по всей видимости, появилась и начала распространяться в популяции совсем недавно – позже, чем отступил ледник и сформировались Песчаные Холмы с их светлым грунтом. В пользу этого свидетельствуют результаты статистических тестов. В частности, оказалось, что «светлые» варианты гена Agouti (в которых отсутствуют вышеупомянутые три нуклеотида) меньше варьируют по остальным полиморфным сайтам, чем «темные» варианты. Уровень полиморфизма в окрестностях полезной мутации относительно низок. Это типичный пример «выметания посредством отбора», и этого не должно было бы наблюдаться, если бы данная мутация (выпадение трех нуклеотидов) существовала в популяции в качестве нейтральной задолго до того, как появились Песчаные Холмы и она стала полезной.

Исследование показало, что быстрое формирование новых адаптаций может происходить за счет новых мутаций, которые появляются уже после того, как в них «возникла потребность». В тот момент, когда условия среды (а значит, и направление отбора, действующего на популяцию) вдруг меняются, в популяции может не оказаться подходящих генетических вариантов, которые были до сих пор нейтральными, а теперь стали полезными. Скорее всего, светлая окраска была не нейтральной, а однозначно вредной для хомячков, пока они жили в районах с темной почвой. Но, когда образовались Песчаные Холмы – подходящая для жизни хомячков территория со светлой почвой, – ситуация сразу изменилась, и изредка появляющиеся в популяции светлоокрашенные мутанты, которых отбор до сих пор безжалостно отсеивал, получили свой шанс.

Отбору все равно

Есть другие случаи адаптивных изменений окраски, где механизм адаптации на молекулярном уровне хорошо изучен. Один из таких примеров – скальные щетинистые прыгуны (Chaetodipus intermedius), грызуны, обитающие в пустынях юго-запада США, где участки светлого грунта чередуются с черными лавовыми полями. Как читатели уже догадались, на светлых участках преобладают светлоокрашенные животные, на лавовых полях – темноокрашенные. Показано, что отбор в данном случае осуществляется хищными птицами, в том числе совами, которые лучше видят на темном фоне светлую добычу, а на светлом – темную. Самое интересное, что у обитателей разных лавовых полей отбор зафиксировал разные мутации, приводящие к одному и тому же фенотипическому эффекту – темной шерсти. На одном из лавовых полей все черные грызуны несут мутацию в гене меланокортинового рецептора MC1R (это один из генов, регулирующих синтез черного пигмента эумеланина)[26]. У прыгунов, обитающих на лавовых полях, удаленных на 700 км от первого, черная окраска определяется мутациями в других генах (Majerus, Mundy, 2003).

Отбору все равно, мутацией какого гена вызвано изменение окраски. Никто не проектирует эволюционное изменение, все происходит само собой. Если возникает мутация, фенотипический эффект которой здесь и сейчас повышает эффективность размножения (приспособленность) ее носителей, то оные носители, эффективно размножаясь, передают мутацию по наследству своим потомкам. А это автоматически ведет к росту частоты встречаемости данной мутации в генофонде. Вот и все. Как видите, можно точно описать дарвиновский эволюционный механизм, не используя слово «отбор» (дабы не вводить читателя лишний раз в искушение, ведь в привычных метафорических формулировках типа «отбор поддерживает» или «отбору все равно» легко усмотреть то, чего там на самом деле нет, – приписывание отбору свойств разумного деятеля, имеющего какие-то цели и планы).

Перед нами классический пример адаптации животных к внезапно изменившимся природным условиям. Чтобы приобрести полезный признак, хомячкам потребовалось изменить всего один ген, а если еще точнее – всего лишь три нуклеотида в нем. И в результате мутации хомячки обрели защитную окраску. Эта мутация, как и в случае с культурным рисом, стала полезной после изменения условий среды и направленности отбора, а до того она была для организмов вредной. В геноме остались следы работы отбора, и мы умеем их находить и анализировать. И мы видим, что все случилось не по взмаху волшебной палочки, а здесь действовал мелочный и постепенный положительный отбор.

Но полезная мутация может быть связана не только с дефектом того или иного потерявшего актуальность гена, как в случае с рисом, или с изменением активности гена на определенной стадии развития организма, как в случае с хомячками. Очень своевременной может стать и замена аминокислоты в активном центре фермента, в результате которой фермент приобретает способность работать с новыми веществами. Следующий пример – как раз из этой серии.

Малярийный плазмодий о пользе точечных мутаций

Начиная с 1960-х годов по всему миру распространились штаммы малярийного плазмодия, устойчивые к хлорохину – лекарству, которое прежде было самым эффективным противомалярийным средством. Хлорохин впервые синтезировали в 1934 году. Благодаря своей эффективности и дешевизне он вскоре стал главным оружием медиков в борьбе с малярией, оттеснив хинин и другие препараты на второй план. Но уже через четверть века, в конце 1950-х годов, почти одновременно в двух точках земного шара – в Колумбии и Таиланде – появились штаммы возбудителя малярии Plasmodium falciparum, устойчивые к хлорохину. В течение последующих 20 лет они распространились из этих двух центров по всем территориям, где встречается малярия.

Генетики установили, что причиной устойчивости являются мутации в одном из генов паразита. Белок, кодируемый этим геном, получил название PfCRT (Plasmodium falciparum Chloroquine Resistance Transporter). Этот белок находится в мембране, окружающей пищеварительную вакуоль паразита – пузырек, в котором происходит переваривание гемоглобина. По аминокислотной последовательности белка PfCRT было ясно, что это мембранный белок, выполняющий транспортную функцию.

Рис.8 Эволюция. Классические идеи в свете новых открытий

Схема распространения штаммов малярийного плазмодия Plasmodium falciparum, устойчивых к хлорохину.

У «нормальных», восприимчивых к хлорохину плазмодиев хлорохин проникает в пищеварительную вакуоль путем диффузии. Внутри вакуоли pH ниже, чем снаружи. Попав в кислую среду, молекула хлорохина присоединяет к себе дополнительный протон и приобретает положительный заряд. Это лишает ее возможности выйти обратно из вакуоли – молекула оказывается в ловушке. В результате хлорохин накапливается в вакуоли, мешая паразиту переваривать гемоглобин.

Но у паразитов, устойчивых к хлорохину, лекарство в пищеварительной вакуоли не накапливается. Поскольку устойчивость связана с изменениями в транспортном белке, логично было предположить, что благодаря этим мутациям белок PfCRT приобрел способность откачивать хлорохин из вакуоли. Чтобы проверить это предположение, ученые ввели ген PfCRT из устойчивого плазмодия в яйцеклетки лягушки и заставили его там работать (Martin et al., 2009). Новый чужеродный белок встроился в наружную мембрану яйцеклетки и занялся тем, что он умел, – стал перекачивать хлорохин из внешней среды через мембрану в цитоплазму яйцеклетки. Процесс шел, если значение pH в окружающей среде было примерно такое же, как в пищеварительной вакуоли плазмодия. Тот же белок, взятый у чувствительного к хлорохину плазмодия, не перекачивал хлорохин ни при каких условиях.

Таким образом, устойчивость паразитов к хлорохину объясняется тем, что белок PfCRT в результате мутаций приобрел новую функцию. Исходный вариант этого белка отвечал за транспорт каких-то других веществ из пищеварительной вакуоли в цитоплазму. Каких именно – пока неизвестно.

Существует несколько мутантных вариантов белка PfCRT, обеспечивающих устойчивость к хлорохину. У всех этих вариантов есть только одна общая особенность – замена лизина треонином в определенной позиции в молекуле белка. Аминокислота, стоящая в этой позиции, входит в состав активного центра, который отвечает за узнавание и связывание транспортируемой молекулы. Лизин, в отличие от треонина, имеет положительный заряд. По-видимому, два положительных заряда и у хлорохина, и у транспортера не позволяют молекулам соединиться; а если у транспортера заряд активного центра становится нейтральным, то пожалуйста – белок-транспортер начинает работу.

На примере приспособления малярийного плазмодия к хлорохину мы познакомились с одним из магистральных (наиболее вероятных, простых и часто реализуемых) путей приобретения белками новых функций. Работа большинства белков в клетке связана со специфическим распознаванием определенных молекул. Фермент безошибочно «узнает» свой субстрат – молекулу, которую он должен преобразовать. Антитело распознает свой антиген (чужеродный белок или углевод). Транскрипционный фактор[27] находит на длинной молекуле ДНК свой сайт связывания – последовательность нуклеотидов, к которой он прикрепляется, чтобы регулировать активность соседнего гена. Рецептор избирательно связывается со «своим» сигнальным веществом. Транспортный белок узнает молекулу, которую он транспортирует с одной стороны мембраны на другую… Специфическое распознавание (называемое также сродством) обеспечивается свойствами активного центра белка, который должен подходить к субстрату как замок к ключу: во-первых, по форме, во-вторых – по распределению положительных и отрицательных зарядов. Конфигурация активного центра, как правило, зависит от небольшого числа «ключевых» аминокислот.

Мутация, изменившая одну-две аминокислоты в активном центре, с большой вероятностью изменит специфичность белка, так что он начнет связываться с другими субстратами. Скорее всего, единичная мутация изменит спектр субстратов не очень сильно, т. е. новые субстраты будут похожи на старые. Способность узнавать старые субстраты при этом может сохраниться, а может и пропасть. К сожалению, мы не знаем, каковы были старые субстраты транспортного белка PfCRT и сохранил ли он сродство к ним после того, как приобрел способность связывать хлорохин. Но то, что он изменил свою специфичность и приобрел новую функцию из-за замены аминокислоты в активном центре, не вызывает сомнений. То, что эта мутация оказалась полезной для паразита в новых условиях, когда его повсеместно травили хлорохином, тоже не нуждается в пояснениях (и, к сожалению, неважно, что думает заболевший пациент или врач, прописавший ему хлорохин).

В иммунной системе позвоночных появление рецепторных белков с новыми функциями поставлено «на поток». Лимфоциты используют для создания новых антител и Т-клеточных рецепторов, необходимых для обезвреживания бактерий, вирусов и прочих паразитов, чисто «дарвиновский» механизм: внесение случайных мутаций в активный центр (так называемую вариабельную область антитела) с последующим отбором и размножением удачных вариантов. Об этом подробно рассказано в книге «Рождение сложности».

Защита от биологического оружия

Множество примеров классической «эволюции по Дарвину» стало известно в ходе изучения приспособлений наших природных врагов – вирусов, болезнетворных бактерий, вредителей – к тем средствам, которые мы используем для борьбы с ними. Малярийный плазмодий – это один из таких. Но имеются и другие. К сожалению.

Травить насекомых-вредителей обычными ядами (пестицидами) – гиблое дело как в прямом, так и в переносном смысле. Во-первых, трудно разработать яд, вредный только для данного насекомого и больше ни для кого. Во-вторых, насекомые быстро приспосабливаются к ядам. Они хорошо научились этому за 300 млн лет сопряженной эволюции с растениями, которые испокон веков пытались защищаться от вредителей при помощи ядов-алкалоидов. Что же удивительного в том, что за последние 50 лет зарегистрировано более 2500 случаев адаптации насекомых-вредителей к различным пестицидам?

Более перспективным средством контроля численности вредителей (в первую очередь бабочек) считаются бакуловирусы. Эти вирусы обладают несколькими замечательными свойствами, которые делают их почти идеальным биооружием против вредителей. Бакуловирусы безопасны для всего живого, кроме насекомых определенного вида, имеют прочную белковую оболочку, устойчивы во внешней среде, и поэтому ими можно просто опрыскивать деревья при помощи обычных распылителей. Зато «свои» виды насекомых бакуловирусы прилежно заражают и доводят до смерти. До недавних пор не было случаев выработки насекомыми устойчивости к бакуловирусам. Ежегодно в мире бакуловирусами обрабатывают 2–3 млн га.

Для борьбы с яблонной плодожоркой Cydia pomonella в Западной Европе с успехом использовался мексиканский штамм вируса CpGV (Cydia pomonella granulovirus). Кстати, это одно из очень немногих инсектицидных средств, которые еще не запрещены в цивилизованных странах. Но гром все-таки грянул: начиная с 2003 года из разных садоводческих хозяйств Германии и Франции стали поступать тревожные сообщения о том, что проверенный препарат перестает действовать.

Германские генетики немедленно приступили к изучению проблемы. В 13 яблоневых садах в Южной Германии было установлено непрерывное наблюдение за ситуацией. Выяснилось, что многие популяции вредителя действительно приобрели устойчивость к вирусу. Это привело к снижению эффективности вирусного препарата в 100-1000 раз (иными словами, для достижения «исходного» уровня смертности гусениц необходимо увеличить дозировку от 100 до 1000 раз). В 2005 году уже появились популяции, устойчивость которых выросла в 100 тыс. раз по сравнению с исходной (Asser-Kaiseret al., 2007).

Одна из устойчивых популяций начиная с 2003 года подвергалась классическому генетическому анализу: бабочек скрещивали, размножали потомство от разных пар, определяли устойчивость к вирусу в разных линиях. Выяснилось, что популяция генетически неоднородна: наряду с устойчивыми особями в ней есть и какая-то доля неустойчивых. Для удобства исследований генетики выделили «чистую линию» устойчивых бабочек. Результаты скрещивания этой линии с «контролем» – бабочками, сохранившими восприимчивость к вирусу, – поначалу выглядели противоречивыми. В одних случаях устойчивость к вирусу вела себя как доминантный признак, в других – как рецессивный, в одних – как сцепленный с полом, в других – как несцепленный.

После дополнительных экспериментов и многочисленных перепроверок картина прояснилась. Оказалось, что трудности были связаны, во-первых, с тем, что доминантность признака зависит от концентрации вируса (при низких концентрациях признак доминантен, при высоких – рецессивен)[28], во-вторых, характер действия связан с полом: зараженные самцы и самки погибают на разных стадиях жизненного цикла. Поэтому, например, гусеницы, которых считали «выжившими» после 7– или 14-дневного эксперимента, в действительности могли быть уже «генетически мертвыми», так как потеряли способность к окукливанию.

В итоге стало ясно, что полезная мутация, определяющая устойчивость к вирусу, локализована в половой хромосоме Z (у бабочек, как у птиц, мужской набор половых хромосом – ZZ, женский – WZ). При низких концентрациях вируса устойчивый аллель (Zr) ведет себя как доминантный, а «нормальный», не дающий устойчивости к вирусу аллель (Zs), – как рецессивный. Это значит, что самцы, гетерозиготные по этому признаку (генотип ZrZs), при низких концентрациях вируса остаются живы. Гомозиготные самцы ZrZr, естественно, тоже выживают, ZsZs – погибают. Самки имеют только одну копию хромосомы Z, поэтому те, у которых генотип ZrW, выживают, а ZsW – погибают.

При высоких концентрациях вируса у самок все остается по-прежнему, а вот для самцов ситуация меняется. Им теперь уже не хватает для выживания одной копии «гена устойчивости», и выжить могут только гомозиготы (ZrZr), а гетерозиготы (ZrZs) погибают. Таким образом, устойчивость к вирусу из доминантного признака превращается в рецессивный.

Такой способ наследования признака создает идеальные условия для его быстрого распространения и закрепления в популяциях. На начальном этапе распространения новой полезной мутации, пока носители мутантного аллеля редки, скорость распространения мутации под действием отбора будет максимальна именно в том случае, если мутация доминантна и сцеплена с полом. Эти условия создают сами фермеры, опрыскивающие свои сады малыми концентрациями вируса. На втором этапе, когда частота мутантного аллеля уже успела увеличиться, его дальнейшее распространение будет происходить наиболее быстро, если он рецессивен. И фермеры сами делают его рецессивным: они видят, что червивых яблок становится больше, и увеличивают дозировку препарата. Таким образом, садоводы выступают в качестве фактора, ускоряющего эволюцию. Дело заканчивается полной фиксацией (закреплением) аллеля Zr и исчезновением из популяции аллеля Zs (именно это и произошло в вышеупомянутых популяциях, где устойчивость к вирусу выросла в 100 тыс. раз).

Исследователи указывают на необходимость разработки мер, препятствующих распространению генов устойчивости в популяциях вредителей. Нарождающаяся научная дисциплина, призванная заниматься разработкой таких мер, называется «прикладная эволю ционная биология». Один из многообещающих методов борьбы с выработкой устойчивости состоит в повышении генетического разнообразия применяемых вирусов. Используемые сейчас в садоводстве вирусы CpGV генетически очень однообразны. Ситуацию можно исправить, если дать возможность самим вирусам немного поэволюционировать.

Полезные мутации переключателей

Устойчивость к ядам, вирусам, бактериям и прочим паразитам, защитная окраска, превращение опадающих семян в неопадающие – все это примеры простых адаптаций, для развития которых бывает достаточно одной-двух удачных мутаций, поддержанных отбором. Более глубокие преобразования складываются из десятков и сотен подобных «мелочей». Одна простая полезная мутация может изменить ландшафт приспособленности для организма (или вывести его в новую область этого ландшафта) – например, изменить взаимоотношения организма со средой, сделав возможной жизнь в условиях, доселе неприемлемых, – и в результате какие-то другие мутации, прежде бывшие вредными, станут полезными и рано или поздно зафиксируются, открыв возможности для новых изменений.

Поскольку для крупных эволюционных преобразований требуется последовательное закрепление множества мутаций, такие изменения трудно «расшифровать» на молекулярном уровне, а уж пронаблюдать воочию и вовсе невозможно из-за длительности процесса. Те случаи, которые все-таки удается расшифровать, – это, по-видимому, редкие, нетипичные случаи, когда крупное изменение обеспечивается всего несколькими мутациями. Но такие случаи есть, и мы пока не знаем наверняка, так ли уж мала их роль на больших – эволюционно значимых – отрезках времени. Мы познакомимся с одним из таких случаев, когда всего две мутации обеспечили интересное и важное адаптивное приобретение у многоклеточного животного – нематоды (круглого червя). В результате двух мутаций нематоды приобрели способность к самооплодотворению – стали гермафродитами. Этот пример важен нам также для того, чтобы показать, как в ходе эволюции подстраиваются друг к другу разные гены, регулирующие определенную функцию.

У большинства нематод, как и у многих других животных, пол определяется генетически, при помощи половых хромосом. Если в оплодотворенном яйце две X-хромосомы, из яйца разовьется самка, если одна – самец (Haag, 2005). Однако у двух наиболее изученных видов нематод, Caenorhabditis elegans и C. briggsae, особи с двумя X-хромосомами – не самки, а гермафродиты. Их гонады (половые железы) на поздних личиночных стадиях производят спермии. Нематоды утратили в ходе эволюции жгутики, поэтому и спермии у них безжгутиковые. Они похожи на амеб и передвигаются при помощи псевдоподий. У гермафродитов безжгутиковые спермии поздних личинок переползают в специальные хранилища – сперматеки – и здесь ждут своего часа. Гонады взрослых гермафродитов производят уже не спермии, а яйцеклетки. Они могут быть оплодотворены как собственными спермиями из сперматеки, так и спермиями самца в результате спаривания.

Предки C. elegans и C. briggsae были нормальными раздельнополыми червями. Это следует, в частности, из того, что все прочие виды рода Caenorhabditis – раздельнополые. По-видимому, гермафродитизм у C. elegans и C. briggsae является «эволюционно молодым», новым признаком. Чтобы разобраться, как он возник, понадобились выдумка, знание геномов нескольких видов нематод и эксперименты, осуществленные американскими биологами (Baldi et al., 2009). Вот как это было.

Для начала уточним, какие гены работают при формировании половых различий у нематод. Наличие одной (а не двух) X-хромосом у самцов служит триггером, включающим синтез белка HER-1, который ингибирует белок TRA-2. Подавление активности TRA-2 через пару промежуточных шагов приводит к уничтожению белка TRA-1, функция которого состоит в том, чтобы отключать ряд ключевых генов, направляющих развитие по «мужскому» пути (в том числе ген fog-3, контролирующий сперматогенез[29]. У гермафродитов белок HER-1 не образуется, но они все равно производят спермии, потому что активность гена tra-2 на стадии личинки подавляется белками FOG-2 и GLD-1. Таким образом, гермафродиты получаются из-за введения в игру дополнительного правила, связанного с регуляцией гена tra-2.

Запутались? Ничего страшного, это в порядке вещей. Регуляторные сети, управляющие развитием животных, как правило, сложны, громоздки и неоптимальны[30]. К счастью, их не нужно учить наизусть никому, кроме студентов соответствующих специальностей. Чтобы облегчить дело, можно представить устрашающее описание из предыдущего абзаца в виде графической схемы (см. следующую страницу).

На таких схемах стрелочками обозначают положительные влияния (включение гена, активация белка), а «тупичками» – отрицательные (ингибирование белка, подавление активности гена).

Так вот, зная все это, исследователи подумали, что можно попробовать превратить самок раздельнополого вида C. remanei в гермафродитов, подавив активность какого-нибудь гена, блокирующего сперматогенез. Например, гена tra-2.

Начали они с того, что отключили tra-2 при помощи РНК-интерференции[31]. В результате из яиц с двумя X-хромосомами развились вместо самок обыкновенные самцы, производящие нормальные спермии, но никаких яйцеклеток.

Рис.9 Эволюция. Классические идеи в свете новых открытий

Схема регуляции развития пола у нематоды C. elegans, у которой вместо самок гермафродиты.

Тогда ученые справедливо рассудили, что они, видимо, перестарались. Ведь у настоящих гермафродитов активность гена tra-2 хоть и снижена, но не до нуля. Когда эту ситуацию удалось воспроизвести у C. remanei, уменьшив экспрессию tra-2, на свет появились животные, которых авторы назвали псевдогермафродитами. Тело у них было «женское», но в гонадах формировались одновременно и яйцеклетки, и спермии. Правда, эти существа оказались неспособны к самооплодотворению (отсюда и приставка «псевдо»). После скрещивания с самцом превдогермафродиты откладывали оплодотворенные яйца, хоть и в меньшем количестве, чем обычные самки. Это значит, что яйцеклетки у них более или менее нормальные, а неспособность к самооплодотворению, скорее всего, объясняется дефектами спермиев.

Действительно, спермии псевдогермафродитов оказались нормальны по всем параметрам, кроме одного: они неактивны, никуда не ползут, и в частности не перебираются в сперматеки.

У обычных нематод спермии активируются (начинают ползать) под воздействием белков, содержащихся в семенной жидкости. Сохранили ли спермии псевдогермафродитов способность активироваться под действием этих белков? Чтобы это проверить, авторы скрещивали псевдогермафродитов с самцами C. elegans. Самцы C. elegans охотно спариваются с самками C. remanei, но эти браки бесплодны (как-никак два вида разошлись, судя по показаниям молекулярных часов, около 80 млн лет назад, а для развития генетической несовместимости обычно хватает нескольких миллионов лет[32]). Идея такого спаривания как раз и состояла в том, чтобы половые клетки от разных видов не сливались, но при этом псевдогермафродиты могли получить нормальные белки семенной жидкости.

И когда после этого адюльтера псевдогермафродиты C. remanei отложили оплодотворенные яйца, некоторые из них оказались жизнеспособными! Из них вывелись нормальные самки C. remanei (не псевдогермафродиты, потому что им никто не подавлял активность гена tra-2). Это означает, что спермии у псевдогермафродитов получились нормальными, не хватает только активирующих белков.

Это открытие сузило круг потенциальных генов-мишеней, на которые нужно воздействовать, чтобы превратить псевдогермафродитов в полноценных гермафродитов. «Подходящим» геном оказался swm-1, который кодирует белок, подавляющий активность других белков – протеаз, активирующих спермии. Ген swm-1 отвечает за предотвращение преждевременной активации спермиев у самцов C. elegans, но у него есть и другие функции. Ученые понизили активность этого гена у псевдогермафродитов – и те, к большой радости исследователей, приобрели способность к самооплодотворению.

Таким образом, для появления нового признака – гермафродитизма – достаточно уменьшить активность двух генов, входящих в два разных регуляторных каскада. Для этого нужны две мутации. Изменение активности того или иного гена в результате случайной мутации – дело самое обычное. Проблема в другом: одновременное возникновение двух мутаций, полезных только вместе, но не по отдельности, крайне маловероятно. Могли ли они появиться последовательно или это равносильно преодолению пропасти в два прыжка? Исследователи рассмотрели два возможных сценария.

1. Сначала произошла мутация, уменьшившая активность swm-1 у самок, что позволяет активировать собственные спермии (если они есть). Эта мутация поначалу была нейтральной, потому что самки еще не умели производить спермии. В дальнейшем возникла мутация, понизившая активность tra-2. Эта мутация сразу оказалась полезной (т. е. была поддержана отбором), потому что превратила самок в самодостаточных гермафродитов (о полезности гермафродитизма см. ниже). Но могла ли первая мутация не принести вреда, если известно, что ген swm-1 многофункционален? И вот тут-то на помощь приходит знание геномов изучаемых червей (недаром в последние годы биологи столько сил и средств тратят на прочтение геномов всевозможных тварей). Оказывается, в геномах раздельнополых видов есть только одна копия swm-1, а у гермафродитных есть еще и вторая, немного отличающаяся копия. По-видимому, становлению гермафродитизма способствовала дупликация (удвоение) этого гена, что и позволило снять «адаптивный конфликт». Одна из копий изменилась, чтобы обеспечить активацию спермиев у гермафродитов, а вторая продолжила выполнение остальных функций[33].

2. Второй сценарий начинается с мутации, снизившей активность tra-2. Это привело к появлению псевдогермафродитов. Лишь после этого возникла и закрепилась мутация, снижающая активность swm-1. Однако псевдогермафродиты фактически являются всего лишь неполноценными самками: к самооплодотворению они не способны, а с ролью самок справляются хуже, чем настоящие самки. Поэтому на первый взгляд кажется, что отбор должен был отсеять первую мутацию. Но вспомним, что самки C. remanei привлекательны для самцов других видов, а спаривание с этими самцами дает им возможность самооплодотвориться. Эта особенность могла стать «мостиком», с помощью которого эволюционирующий вид сумел преодолеть опасный промежуточный этап и дождаться возникновения второй мутации. В некоторых ситуациях псевдогермафродиты, способные к самооплодотворению после спаривания с самцами других видов, могли иметь адаптивное преимущество – например, когда численность популяции критически снижалась.

Таким образом, при ближайшем рассмотрении оказывается, что червям не нужно было «преодолевать пропасть в два прыжка». Там все-таки были мостики.

Изменение активности гена в сторону уменьшения или увеличения может произойти в результате самых разных мутаций. Это могли быть мутации в регуляторных областях самих генов tra-2 и swm-1, или мутации генов-регуляторов, управляющих их работой, или мутации регуляторов регуляторов, и т. д. Важно, что в такой ситуации – когда оказывается выгодно уменьшить или увеличить экспрессию какого-либо гена – вероятность того, что случайная мутация, меняющая активность гена, окажется полезной, а не вредной, приближается к 1/2, т. е. становится чрезвычайно высокой. Скорее всего, именно поэтому очень многие «прогрессивные» эволюционные преобразования, как теперь выясняется, были связаны с изменениями уровня активности генов, а не их белок-кодирующих последовательностей. Между прочим, это относится и к эволюции человека (Gilad et al., 2006).

Появление новых признаков путем изменения активности генов – один из магистральных путей эволюции. Почему? Да прежде всего потому, что это просто. В инструкциях по устранению неисправностей в работе электроприборов неизменно присутствует «мудрый совет», раздражающий многих: проверьте, включена ли вилка в розетку. За ним кроется универсальный принцип: во многих случаях нужного эффекта можно добиться, манипулируя только выключателями и не развинчивая весь механизм.

Конкретные мутации, ответственные за снижение активности генов tra-2 и swm-1 у предков C. elegans и C. briggsae, возможно, были разными. Например, известно, что у гермафродитов первого вида в подавлении активности tra-2 участвует ген fog-2, отсутствующий у второго вида. Предки C. briggsae утратили ген fog-2, вероятно за ненадобностью. У этого вида ключевую роль в обеспечении нормального сперматогенеза у гермафродитов играет другой ген – she-1. Этот пример показывает, что в ходе эволюции «переключатели» генетических регуляторных каскадов могут меняться, в то время как структура и функции каскадов остаются прежними.

Это относится и к механизмам определения пола. Разделение на самцов и самок есть у большинства животных. Соответственно, есть и генетические «программы» (большие и сложные) развития по мужскому и женскому пути. Однако переключатели, направляющие развитие по одному из двух путей, часто меняются в ходе эволюции. Например, у тех же нематод многие виды перешли от хромосомной детерминации пола к «средовой», т. е. пол у них зависит не от генов, а от условий, в которых проходит развитие. Мы теперь понимаем, что такие эволюционные изменения относятся к числу высоковероятных. Точно так же вы можете заменить кнопку электрического выключателя в своей комнате на систему последовательно и параллельно соединенных тумблеров, реле или повесить шнурок с кисточкой, не меняя при этом проводку и люстру. Управлять освещенностью, возможно, станет удобнее, но сам «фенотип» от этого не изменится: свет по-прежнему будет или включен, или выключен.

Ну и последнее: зачем вообще кому-то понадобилось переходить к гермафродитизму? Как могли мутации, превратившие самок в гермафродитов, оказаться полезными для предков C. elegans и C. briggsae? Дело в том, что в некоторых ситуациях гермафродитизм дает очевидное преимущество[34]. Например, если участки, пригодные для жизни нематод данного вида, встречаются очень редко (это вполне справедливо для представителей рода Caenorhabditis) и вероятность того, что хотя бы один червь попадет на новый, незаселенный участок, очень мала, то вероятность того, что на этот участок попадут сразу два червя – самец и самка, – будет и вовсе ничтожной. Естественно, в такой ситуации преимущество получат черви, способные размножаться без посторонней помощи, путем самооплодотворения. Или, на худой конец, с помощью самцов других видов.

Гены взаимной дружбы

В книге «Рождение сложности» немало говорилось об эволюционной роли симбиоза. На одних мутациях и отборе можно уехать далеко, но возможность комбинировать эволюционные «достижения» разных организмов в одном симбиотическом сверхорганизме открывает еще более впечатляющие перспективы. Впрочем, чтобы наладить с кем-то эффективный симбиоз, без мутаций и отбора тоже не обойтись. Такие договоры на гербовой бумаге не подписываются, тут нужно тщательно приладиться друг к другу.

Одним из таких межорганизменных «договоров» является симбиоз наземных растений с почвенными грибами и бактериями. Эволюционный успех наземных растений во многом был обеспечен именно этими взаимовыгодными отношениями: грибы и бактерии снабжают растение соединениями азота и фосфора, получая взамен углеводы, образуемые растением в ходе фотосинтеза. Ведь сами наземные растения так и не научились фиксировать азот.

Самой древней разновидностью такого симбиоза является микориза, известная в двух вариантах: более простая эктомикориза (гриб не проникает внутрь растительных клеток) и эндомикориза, или арбускулярная микориза, при которой гифы гриба врастают внутрь клеток корня. Судя по палеонтологическим данным, арбускулярная микориза существовала уже у древнейших наземных растений, робко пытавшихся освоить негостеприимную сушу 450 млн лет назад, в ордовикском периоде. Весьма вероятно, что без симбиоза с грибами эти попытки были бы обречены на провал – или, что еще вероятнее, их бы не было вовсе. Некоторые данные указывают на то, что симбиоз с грибами зародился у зеленых водорослей, предков наземных растений, еще в водной среде, что и обеспечило возможность освоения суши. О древности арбускулярной микоризы свидетельствует, помимо прочего, ее широкое распространение во всех группах наземных растений.

Помимо грибной микоризы пользуется спросом и симбиоз с азотфиксирующими бактериями. Отношения растений с азотфиксаторами тоже имеют древнюю историю, однако в большинстве случаев речь идет о внеклеточных бактериальных симбионтах. Только некоторые покрытосеменные (цветковые) растения сравнительно недавно научились культивировать бактерии внутри клеток своих корней, в особых органах – клубеньках. Клубеньковые симбиозы бывают двух типов: 1) симбиоз бобовых с ризобиями (бактериями из группы альфапротеобактерий); 2) актинориза – симбиоз с актинобактериями рода Frankia. Актинобактерии образуют многоклеточный мицелий наподобие грибов; раньше их относили к грибам и называли актиномицетами.

Клубеньковые симбиозы встречаются только в четырех группах (порядках) покрытосеменных: у бобовых (Fabales), розовых (Rosales), тыквенных (Cucurbitales) и буковых (Fagales), причем не у всех, а только у части представителей. Недавно на основе молекулярно-генетических данных было установлено, что эти четыре порядка представляют собой монофилетическую кладу, т. е. группу, происходящую от общего предка и включающую всех его ныне здравствующих потомков. Вероятно, у общего предка этой группы произошли какие-то генетические изменения, обусловившие возможность развития клубенькового симбиоза. Одни представители группы впоследствии воспользовались этой возможностью, другие нет.

Симбиоз бобовых с ризобиями изучен лучше, чем актинориза. Но у двух типов клубеньковых симбиозов обнаружилось много общего: по меньшей мере семь генов задействованы в обоих симбиозах. Эти гены получили название «общих генов симбиоза». По-видимому, при становлении клубенькового симбиоза была использована древняя генетическая программа, сложившаяся изначально для обслуживания внутриклеточного симбиоза с грибами. Для полноты картины хотелось бы уяснить, что же изменилось в генах при становлении тесных отношений с азотфиксаторами.

В 2008 году британские и германские биологи (Markmann et al., 2008) взяли разные группы цветковых и проанализировали строение белков, кодируемых «общими генами симбиоза». Оказалось, что у всех цветковых большинство этих белков имеют почти одинаковую, «консервативную» структуру. И только один из них оказался вариабельным. Белок этот называется SYMRK (symbiosis receptor kinase). Он различается у клубеньковых растений, двудольных и однодольных.

Строение SYMRK, а точнее строение его доменной части (домен – функциональная часть или блок белковой молекулы, содержащий узнаваемый аминокислотный «мотив»), говорит кое-что о специализации этого белка в клетке. У него есть, во-первых, трансмембранный домен, который, как видно из названия, располагается в толще клеточной мембраны (для белка клеточная мембрана и вправду толстая и вместительная). Во-вторых, внутриклеточная часть белка содержит домен протеинкиназы, функция которого состоит в переносе фосфата с АТФ на какой-нибудь белок. Этот процесс называется фосфорилированием. Таким способом многие рецепторные белки передают полученный извне сигнал внутрь клетки, поскольку фосфорилирование белков меняет их свойства – например, переводит их в активное состояние из неактивного. И трансмембранный домен, и домен протеинкиназы в белке SYMRK почти одинаковы у всех цветковых. Различия сосредоточены во внеклеточной части белка, которая выполняет рецепторную функцию, т. е. улавливает внешний химический сигнал. Исследователи выявили три варианта этой вариабельной внеклеточной части белка SYMRK:

1) «длинный вариант», характерный для растений, образующих клубеньки, и их близких родственников;

2) «средний вариант», характерный для дальних родственников клубеньковых растений;

3) «короткий вариант», характерный для однодольных.

Грибная арбускулярная микориза встречается у обладателей всех трех вариантов гена. Клубеньки любого типа (содержащие ризобии или актинобактерии) встречаются только у обладателей «длинного» варианта гена SYMRK. Очевидно, желающие приобрести клубеньки позаботились о своевременном распознавании дефицитных симбионтов. Длина нуклеотидной последовательности увеличивается за счет включения в ключевую область двух фрагментов (доменных мотивов) других генов. Оба эти фрагмента были не изобретены заново, а «заимствованы» у генов белков, имеющихся в геноме растений.

Очевидно, приобретение «длинного» варианта SYMRK как раз и было тем ключевым событием, которое создало предпосылки для развития клубеньковых симбиозов – причем «генетическая программа» клубенькового симбиоза представляет собой модификацию «генетической программы» арбускулярной микоризы. Это проверили в серии экспериментов.

В первом эксперименте у растения датиска (Datisca glomerata), корни которого в норме образуют арбускулярную микоризу и актиноризу, отключили ген SYMRK. В результате растение утратило способность к формированию обоих симбиозов – и с грибом, и с актинобактерией Frankia. Значит, ген SYMRK необходим и для грибного, и для бактериального симбиоза, у них единая генетическая основа.

Второй эксперимент показал, что ген SYMRK не служит для распознавания конкретных бактерий-симбионтов. Бобовое растение лядвенец японский (Lotus japonicus) образует клубеньки с бактерией-ризобией Mesorhizobium loti, а люцерна (Medicago truncatula) – с бактерией Sinorhizobium melioti. Мутантной люцерне с испорченным геном SYMRK, не способной формировать никакой симбиоз вообще, пересадили ген SYMRK от лядвенца. Эта операция полностью восстановила способность люцерны образовывать симбиоз. При этом трансгенная люцерна стала образовывать клубеньки со «своей» исконной бактерией Sinorhizobium, а вовсе не с Mesorhizobium. Также мутантному лядвенцу пересаживали ген SYMRK от других бобовых и их бесклубеньковых родственников, например настурции, и во всех случаях его пошатнувшиеся отношения со своим Mesorhizobium восстанавливались. Таким образом, SYMRK отвечает не за узнавание и выбор симбионта, а только за общую способность формировать внутриклеточный симбиоз с бактериями. Узнавание осуществляется другими белками, какими именно – пока не установлено.

В третьем эксперименте снова использовали мутантную форму лядвенца японского, не образующую ни арбускулярной микоризы, ни клубеньков. Растениям пересаживали «средний» вариант гена, взятый у помидора, и «короткий» вариант, позаимствованный у риса. В обоих случаях у мутантного лядвенца восстановилась способность к формированию арбускулярной микоризы, но не клубеньков. Следовательно, укороченные варианты гена SYMRK достаточны для грибной микоризы, но не для клубеньковых симбиозов.

Белок SYMRK необходим для формирования особых внутриклеточных структур – симбионтоприемников или «преинфекционных нитей», которые впоследствии заселяются симбиотическими бактериями (и тогда их уже называют «инфекционными нитями»). Похожие структуры образуются в клетках корней и для принятия грибных симбионтов (в случае арбускулярной микоризы). Сходство в строении этих симбионтоприемников отражает единство генетической программы, отвечающей за формирование всех трех типов внутриклеточного симбиоза: арбускулярной микоризы, симбиоза с ризобиями и актиноризы.

Полученные результаты подтверждают гипотезу, согласно которой способность к формированию клубеньковых симбиозов развилась на основе древней генетической программы арбускулярной микоризы. Ключевое эволюционное событие заключалось в том, что клетки корней приобрели способность реагировать формированием «симбионтоприемников» не только на присутствие симбиотических грибов, но и на близость азотфиксирующих бактерий. А если пристальней вглядеться в молекулярные подробности этого события, то увидим, что для этого понадобилось перенастроить рецепторную часть одного мембранного белка (SYMRK). Этот белок пристроил в свое пользование два дополнительных участка из других имеющихся под рукой генов. Можно сказать, что для налаживания симбиоза организмов использовался своеобразный молекулярный, генный симбиоз. Принципы конструирования нового схожи и на уровне молекул, и на уровне органов, организмов и популяций.

Возникновение клубеньковых симбиозов – исключительное по своей полезности приобретение, имеющее к тому же важное биосферное значение. Казалось бы, для такого «революционного» нововведения потребуется масса приспособлений, реорганизация больших областей генома. Но нет, понадобилось всего лишь научиться узнавать во внешней среде новый объект, а для этого – чуть-чуть видоизменить белок-рецептор. Когда речь идет о внешне сложной проблеме, помогает внимательное разглядывание подробностей (как в примере с белоногими хомячками, чья светлая защитная окраска складывается всего лишь из расширения светлой полосы на шерстинках): ключевое изменение зачастую оказывается простым и легкодостижимым.

Между микро– и макроэволюцией нет принципиальной разницы

Из истории азотфиксирующих симбиозов можно извлечь важный урок. Мы увидели, что важное новшество, такое как появление клубеньковых симбиозов – событие без преувеличения глобальной, биосферной значимости! – реализовалось в ходе эволюции по той же схеме, что и приобретение малярийным плазмодием устойчивости к хлорохину. В обоих случаях ключом к приобретению нового признака стало изменение активного центра белка, отвечающего за избирательное связывание тех или иных веществ. Правда, плазмодий обошелся нуклеотидной заменой, а у растений произошла внутригеномная рекомбинация – перетасовка участков генов. Но это, по правде сказать, пустяк. Гены могли перетасоваться и у плазмодия (с примерами таких событий мы встретимся в следующих главах).

Подобные параллели между самыми крупными и самыми ничтожными эволюционными событиями убеждают биологов в том, что между так называемыми микроэволюцией и макроэволюцией[35] нет принципиальной разницы. Это исключительно вопрос масштаба. Посмотрите на эволюцию в лупу – увидите микроизменения. Взгляните издалека – увидите более значительные макроперемены. Но в основе тех и других лежат сходные механизмы.

На единую природу микро– и макроэволюции указывают и другие факты, в том числе фундаментальное сходство, если не сказать тождество, внутри– и межвидовой изменчивости. Если мы начнем сравнивать генетические различия между двумя особями одного вида с различиями, существующими между особями разных видов, то увидим в буквальном смысле одно и то же: замены нуклеотидов («однонуклеотидные полиморфизмы»), вставки и выпадения нуклеотидов («инделы»), транспозиции (перемещения фрагментов ДНК из одного места генома в другое), инверсии (повороты фрагментов ДНК на 180°), вариации по числу копий повторяющихся фрагментов и т. д. Крупные хромосомные перестройки, такие как слияние двух хромосом в одну или, наоборот, разделение, в пределах одного вида встречаются реже, чем при межвидовых сравнениях, но все же встречаются. Такие перестройки чреваты снижением плодовитости гибридного потомства (т. е. потомства от скрещивания родительских особей с разным числом хромосом), но не являются непреодолимым барьером для гибридизации, как показывают многочисленные примеры видов, в пределах которых число хромосом варьирует[36]. Например, среди диких кабанов, проживающих в Испании, встречаются особи с 36, 37 и 38 хромосомами (Nombela et al., 1990).

Биологи не сразу пришли к пониманию тождества внутри– и межвидовой изменчивости. Довольно долго допускалось существование особых «макроизменений», которые приводят к появлению новых видов и которые принципиально отличаются от внутривидовой изменчивости. Стремительное развитие методов изучения ДНК в последние два десятилетия позволило проверить эти предположения. Проверки они не выдержали. На сегодняшний день о них можно смело забыть.

Важно, что внутри– и межвидовые различия идентичны не только на качественном уровне, но и на уровне количественных соотношений. К примеру, если мы сопоставим генетические различия, имеющиеся между разными людьми, с теми различиями, которые отделяют нас от шимпанзе, то увидим, что эти две группы различий одинаковы по многим статистическим параметрам: по соотношению значимых и незначимых замен в белок-кодирующих генах, по соотношению однонуклеотидных замен и выпадений или вставок нуклеотидов в некодирующих областях и т. д. Между двумя людьми, конечно, различий меньше, чем между человеком и шимпанзе (примерно в 10–20 раз), но различия эти – одной и той же природы.

Например, недавно международная команда генетиков опубликовала результаты сравнения геномов 29 видов плацентарных млекопитающих (Lindblad-Toh et al., 2011). Ученые выявили 3,6 млн функциональных участков ДНК, находящихся под действием очищающего отбора. Эти участки, мутации в которых не являются нейтральными, составляют примерно 5,5 % генома у плацентарных. Около трети из них соответствуют белок-кодирующим, остальные две трети – регуляторным последовательностям. Выявлено 280 тыс. регуляторных участков, происходящих из фрагментов мобильных генетических элементов; 563 участка, эволюция которых шла ускоренными темпами у предков человека после их отделения от предков шимпанзе. Но для нас сейчас важно другое. Когда авторы сопоставили полученные данные с имеющейся информацией по внутривидовой генетической вариабельности Homo sapiens, оказалось, что эти массивы данных прекрасно согласуются друг с другом. Те участки генома, которые мало отличаются у разных видов плацентарных (т. е. являются консервативными – медленно меняющимися в ходе эволюции), в пределах человеческой популяции тоже имеют низкую вариабельность. И наоборот: те участки, которые у разных людей могут сильно отличаться друг от друга, у других плацентарных тоже изменчивы. Более того, многие сайты (нуклеотидные позиции) с ограниченной эволюционной пластичностью (например, позиции, в которых может стоять нуклеотид Г или Т, но не А и не Ц), варьируют одинаковым образом как внутри человеческой популяции, так и у разных видов плацентарных. Это значит, что очищающий отбор, действовавший на геномы различных плацентарных, продолжал схожим образом действовать и на геномы ближайших предков современного человечества – а потому и изменчивость, накопление которой определяется характером очищающего отбора, оказывается сходной внутри вида и между видами.

Итак, изменчивость, определяющая различия между особями одного вида, – это, по сути, та же самая изменчивость, что определяет различия между видами, родами, семействами и т. д. Дайте ей только время, чтобы накопиться.

Эти факты говорят о единстве микро– и макроэволюции, т. е. внутри– и межвидовых эволюционных изменений. Пользуясь модным ныне словечком, можно сказать, что эволюция фрактальна: большое отражается в малом, малое – в большом. Поэтому изучение мельчайших, только в микроскоп заметных событий (а нам их изучать легче всего, учитывая скоротечность жизни) дает адекватное представление и о событиях гораздо большего масштаба.

Глава 3. Секс

Кроме размножения (в основе которого лежит репликация ДНК), наследственности (основанной на специфическом спаривании нуклеотидов), мутаций (включая перетасовку фрагментов ДНК внутри генома) и естественного отбора (влияния мутаций на эффективность размножения) у земной жизни есть еще одна важная шестеренка, еще один незаменимый механизм создания нового, без которого эволюция едва ли смогла бы даже стартовать, не говоря уж о сотворении китов и зябликов.

Биологи, особенно англоязычные, часто называют явление, о котором идет речь, простым и выразительным словом «секс». В русском языке «секс» имеет иной спектр смысловых оттенков, что чревато путаницей. Поэтому давайте уточним, что именно мы будем иметь в виду под сексом. Мы будем иметь в виду любые способы комбинирования в одном геноме фрагментов разных геномов. Это можно еще назвать «межорганизменной рекомбинацией», но «секс» короче и яснее. Под такое определение подходит и привычное нам половое размножение, характерное для сложных организмов, и горизонтальный перенос генов, характерный для бактерий, и даже обмен участками между двумя вирусными геномами, заразившими одну и ту же клетку.

Как секс встраивается в классическую триаду эволюции: изменчивость – наследственность – отбор? Это, если подумать, нечто отличное и от первого, и от второго, и от третьего. Это отдельный фактор, который устанавливает новые отношения между наследственностью и изменчивостью. Он существенно увеличивает пользу от изменчивости, позволяя эволюции работать не с целыми геномами, а с отдельными генами и не с индивидуальными организмами, а с популяционными генофондами. Это резко повышает эффективность отбора. Именно секс превращает биологическое разнообразие на всех его уровнях в мощную адаптивную силу. Но вместе с тем применение этой силы заставляет организмы вырабатывать множество приспособлений, постоянно учитывать именно этот четвертый фактор. Вот уж где сексуальная революция формирует совершенно новые отношения и выдвигает жесткие и специфические требования к приверженцам этих новых отношений. В этой главе мы покажем, для чего нужен и как работает четвертый эволюционный фактор – секс.

Несколько фактов о сексе, которые должен знать каждый

Эукариоты и прокариоты занимаются сексом совершенно по-разному.

Эукариоты практикуют «половое размножение», или, по-научному, амфимиксис. Что бы ни подумал читатель, но это значит, что у них в жизненном цикле присутствует два особых события. Первое – редукционное (т. е. «уменьшающее») деление, или мейоз, при котором из клетки с удвоенным набором хромосом (диплоидной) получаются клетки с одинарным набором (гаплоидные). Клетки, прошедшие редукционное деление, либо сразу становятся половыми клетками (гаметами), как у животных, либо предварительно сколько-то раз делятся обычным способом (митозом) и только после этого дают начало гаметам (так обстоит дело у растений). Второе событие – оплодотворение, или сингамия. При оплодотворении две гаметы, обычно происходящие от разных организмов, сливаются в одну клетку с двойным набором хромосом – зиготу. Зигота снова становится диплоидной, из нее вырастает диплоидный организм, который в какой-то момент путем мейоза начинает производить гаплоидные клетки.

При половом размножении смешивание генов двух родительских организмов, во-первых, взаимное (двустороннее), во-вторых – полногеномное. Отец и мать передают каждой гамете целый гаплоидный геном в одном экземпляре, т. е. ровно по одной копии каждого своего гена. Зигота получает два гаплоидных генома, по одному от каждого из родителей. В ходе мейоза эти два генома перемешиваются, причем весьма тщательно, так что в итоге в каждую гамету попадает более или менее случайная смесь аллелей, полученных данным родительским организмом от своих отца и матери. Соответственно, зигота получит примерно в равных пропорциях аллели обоих своих дедушек и обеих бабушек.

У прокариот (бактерий и архей) все по-другому. Участники полового процесса у них называются не родителями, а донором и реципиентом. Донор – тот, кто отдает часть своих генов и ничего не получает, реципиент – воспреемник чужих генов. Реципиент обретает новый генетический набор и сам становится как бы собственным потомком (а также потомком донора). Эта клетка с новыми генами дает начало своей линии потомков, размножающихся делением и время от времени передающих гены другим особям. Так что обмен генами у прокариот, во-первых, односторонний (от донора к реципиенту), во-вторых, не полногеномный, а фрагментарный, так как передается не целый геном, а лишь отдельные, обычно небольшие фрагменты ДНК.

Существует три разновидности прокариотического секса.

1. Конъюгация, при которой донор активен, а реципиент относительно пассивен. Донор прикрепляется к реципиенту при помощи специального отростка – пилуса (мн. ч. – «пили») и впрыскивает в реципиента немного своей ДНК. Часто этим процессом «руководят» маленькие эгоистичные[37] кольцевые хромосомы – конъюгационные плазмиды. Именно в плазмиде находятся все гены, необходимые для успешной конъюгации, включая гены белков пилуса. Первым делом плазмида перекачивает в реципиента не абы что, а копию самой себя. Часто на этом все и заканчивается. Такие плазмиды ведут себя как настоящие паразиты, используя одних бактерий для того, чтобы попасть в других. Скорее всего, они-то и «изобрели» конъюгацию как средство достижения своих корыстных целей. Однако плазмида может вступить в симбиоз с клеткой-хозяином – ведь, когда он делится, плазмида размножается вместе с ним, поэтому ей выгодно нести в себе гены, полезные для хозяина. Например, часто именно конъюгационные плазмиды распространяют в популяциях бактерий гены устойчивости к антибиотикам. Иногда плазмиды встраиваются в кольцевую хромосому хозяина. В этом случае вместе с плазмидной ДНК реципиент может получить и часть геномной ДНК донора.

2. Вирусная трансдукция. Переходя из клетки в клетку, вирус может прихватить с собой кусочек ДНК прежнего хозяина и встроить его в геном следующего. При трансдукции и донор, и реципиент пассивны. Активен только вирус.

3. Трансформация, при которой донор пассивен (по правде сказать, чаще всего он просто мертв), а реципиент активен. Трансформация – это захват микробами молекул ДНК из окружающей среды. Захваченные фрагменты могут принадлежать мертвым, разрушенным клеткам, но не обязательно: некоторые микробы выделяют ДНК во внешнюю среду еще при жизни. Проглоченная молекула ДНК может быть использована просто в качестве пищи, но может и встроиться в геном реципиента.

Чужие гены встраиваются в геном реципиента двумя способами. Первый способ – «незаконная» рекомбинация. Например, новый фрагмент ДНК может вставиться в хромосому вдобавок к уже имеющимся там генам. Именно так микроб может получить полезный новый ген от неродственного микроба. Такие заимствования могут иметь важные эволюционные последствия, их активно изучают и именно их обычно имеют в виду, когда говорят о горизонтальном переносе генов. Второй способ (гораздо более распространенный, хотя и менее известный, потому что его трудно изучать) – гомологичная рекомбинация. Суть его в том, что фрагмент ДНК донора замещает собой похожий фрагмент ДНК в хромосоме реципиента. Говоря упрощенно, реципиент вырезает из своей хромосомы кусочек и заменяет его похожим кусочком чужой ДНК. Как правило, это происходит при обмене ДНК между близкими родственниками, чьи геномы мало отличаются друг от друга. Если участки ДНК различаются сильно, гомологичная рекомбинация между ними технически невозможна (в гомологичной рекомбинации задействован принцип комплементарности, но мы не будем вдаваться в молекулярные подробности)[38].

Механизм гомологичной рекомбинации – очень древний. Он наверняка был у Луки – последнего общего предка всего живого. Он должен был появиться задолго до Луки, еще на заре РНК-мира. Используется он не только для перетасовки похожих фрагментов ДНК, но и для более очевидной и повседневной задачи, а именно для починки (репарации) повреждений ДНК, таких как разрывы двойной спирали. При этом фрагмент ДНК, гомологичный разрушенному, используется в качестве «заплатки» (да простят нас молекулярные биологи за такое вульгарное упрощение сложного процесса!).

О горизонтальном переносе генов (ГПГ) мы говорили в книге «Рождение сложности». Эволюционная роль этого явления огромна: микробы и одноклеточные эукариоты приобрели множество нужных признаков, заимствуя чужие гены. Геном любой бактерии прямо-таки напичкан явно «неродными», но при этом крайне полезными генами. Один из примеров – появление у цианобактерий способности к кислородному фотосинтезу. Событие, перевернувшее мир, превратившее Землю из унылой бескислородой «планеты микробов» в царство разнообразных, удивительных и сложных «высших» форм жизни. Как оно произошло? Исключительно благодаря горизонтальному переносу. Кислородному фотосинтезу предшествовал фотосинтез бескислородный, более простой, требующий участия одного белкового комплекса – «фотосистемы». Предки цианобактерий умудрились скомбинировать в своем геноме сразу две слегка различающиеся фотосистемы. Одна, вероятно, была у них «своя», а вторую они позаимствовали у другого бескислородного фотосинтетика. Комбинация двух фотосистем в одной клетке позволила цианобактериям перейти к кислородному фотосинтезу – процессу более сложному, но зато и более перспективному. Для бескислородного фотосинтеза требуются дефицитные вещества – доноры электрона, например сероводород или двухвалентное железо. При кислородном фотосинтезе донором электрона служит обычная вода – колоссальное облегчение!

Все это хорошо, но есть одна проблема. То, что мы видим в геномах прокариот, – все эти заимствованные у других микробов полезные гены – не результат ГПГ в чистом виде, а результат комбинации ГПГ и отбора. Мы видим только удачные переносы, потому что неудачные отсеяны отбором. Сколько их было? Точную цифру назвать трудно, но наверняка гораздо больше, чем удачных. Хватать без разбора чужие фрагменты ДНК и встраивать их в свой геном – занятие крайне рискованное. Шанс приобрести что-то полезное при этом ничтожно мал по сравнению с шансами повредить свой геном, испортить важный ген ненужной вставкой или заменой, приобрести что-то несовместимое с имеющимися у вас генами, заполучить смертоносный вирус или активный мобильный элемент, который начнет размножаться и прыгать как сумасшедший и превратит ваш геном в бессмысленную лапшу.

Полезный новый ген у неродственного микроба удается заполучить в среднем лишь раз-другой за миллион лет (примерно такие цифры дал анализ геномов бактерий и одноклеточных эукариот). При этом бесполезные и вредные новые гены доступны в неограниченном количестве. Их можно получать десятками ежедневно.

Естественный отбор не обладает даром предвидения. Он не будет «терпеть» вредный признак (склонность заимствовать чужие гены) миллион лет ради того, чтобы после всех перенесенных мучений приобрести наконец что-то полезное.

Из этого следует, что микробы сохраняют способность к заимствованию генов не потому, что надеются «одолжить» у неродственных микробов какое-нибудь замечательное новшество, новый полезный ген или генный комплекс. Отбор не смог бы поддерживать способность к ГПГ ради такого «журавля в небе». Остается одно из двух. Либо эта способность вообще не поддерживается отбором и является неким «неизбежным злом», либо микробы обмениваются генами по какой-то другой причине: более повседневной и насущной, связанной с какими-то сиюминутными выгодами. Первый вариант маловероятный, отбор умеет сводить «зло» к минимуму, а в природе почти все организмы практикуют генетический обмен. Значит, более осмысленным будет обсуждение второго варианта – выгоды здесь и сейчас. Что это за выгоды? Это мы сейчас и попытаемся выяснить.

Секс против вредных мутаций

Допустим, существует популяция микробов, не умеющих меняться генами (такие организмы называют бесполыми). Допустим, у каждого новорожденного микроба происходит одна вредная мутация. В этом случае популяция обречена на вырождение. С каждым поколением груз вредных мутаций будет расти, а приспособленность – падать. Никакой отбор не сможет остановить накопление мутационного груза, потому что все особи поколения N будут иметь по N вредных мутаций: отбирать некого. Единственное, что сможет сделать отбор, – это замедлить снижение приспособленности, отбраковывая более вредные мутации и сохраняя менее вредные.

Эту идею (в приложении не к микробам с их ГПГ, а к эукариотам с половым размножением – амфимиксисом) разработал великий эволюционный генетик Герман Мёллер (1890–1967). Она вошла в науку под названием «храповик Мёллера». Храповик – это устройство, в котором ось может крутиться только в одну сторону. Имеется в виду, что средняя приспособленность бесполой популяции под действием вредных мутаций может меняться только в сторону ухудшения. Например, если случайно погибнет или мутирует «лучшая» особь в популяции, то эта потеря необратима. Храповик повернулся на один щелчок. Ведь без секса невозможно собрать из пары «плохих» геномов геном получше.

Но если микробы умеют заимствовать чужие гены, то в каждом поколении найдутся счастливчики, которые заменят свой испорченный ген на его неиспорченную версию, взятую у другого микроба, у которого вредная мутация произошла в другом гене. Поэтому в каждом поколении, несмотря на мутагенез, какая-то часть особей окажется свободной от вредных мутаций. Их-то и поддержит отбор, они-то и оставят больше всего потомков. При достаточно мощном отборе популяция сумеет избежать вырождения.

Идею можно выразить иначе. Если у бесполого организма возникает вредная мутация, его потомки уже не смогут от нее избавиться. Она будет, как родовое проклятие, передаваться всем его потомкам вечно (если только не произойдет обратная мутация, что крайне маловероятно). У бесполых организмов отбор может отбраковывать только целые геномы, но не отдельные гены. Сойдут с арены те несчастные, которым совсем не повезло, а останутся те, кого мутационная судьба в этот раз пощадила (при этом вместе с вредной мутацией может исчезнуть и редкий полезный признак). Но и они окажутся хуже, чем их родители, просто их мутации не такие зловредные. Поэтому в череде поколений бесполых организмов вредные мутации могут неуклонно накапливаться. Храповик Мёллера – это настоящая трагедия отцов и детей: отцы могут справедливо сетовать на падение нравов.

Но если организмы размножаются половым путем (или хотя бы изредка практикуют ГПГ с гомологичной рекомбинацией), то индивидуальные геномы иногда перемешиваются. Новые геномы при этом собираются из фрагментов, ранее принадлежавших разным организмам. В результате возникает новая сущность, которой нет у бесполых организмов – генофонд популяции. Гены получают возможность размножаться и выбраковываться поодиночке, независимо друг от друга, а не в неразрывной связке с другими генами данного генома. Отбор получает возможность отделять зерна от плевел: ген с неудачной мутацией может быть отсеян отбором, а остальные гены данного родительского организма могут при этом сохраниться в генофонде.

Таким образом, секс помогает отбору очищать генофонд от постоянно возникающих вредных мутаций, тем самым спасая популяцию от вырождения.

Секс в защиту полезных мутаций

С полезными мутациями ситуация очень похожая. Допустим, в популяции бесполых микробов возникло две полезные мутации. У одного микроба произошла полезная мутация в гене А, у другого – в гене Б. Что будет с потомками удачливых мутантов?

Поскольку обе мутации полезны, потомки мутантов будут размножаться быстрее прочих особей (мы не рассматриваем усложненный вариант, когда оба полезных признака отягощены букетом других мутаций разной степени вредности). Каждый мутант даст начало быстро размножающемуся клону. В конце концов все немутанты будут вытеснены и в популяции останутся два успешных клона: один с мутацией в гене А, другой с мутацией в гене Б. Пока все идет не так уж плохо (с точки зрения «пользы» для популяции).

Дальше начинаются неприятности. Поскольку микробы бесполые, объединить обе мутации в одном геноме они не в силах. Вместо этого начнется конкуренция между двумя клонами, или, по-научному, клональная интерференция. Тот клон, чья мутация оказалась более полезной, в итоге победит, а второй клон (тот, чья мутация оказалась менее полезной) будет вытеснен, т. е. попросту исчезнет. Таким образом, из двух полезных мутаций зафиксируется только одна. Вторая будет утрачена, хотя ее очень жаль терять!

Неэффективность налицо. Бесполая популяция – весьма несовершенная «машина для эволюции». А все потому, что она даже и не популяция в полном смысле слова. Это свора изолированных клонов, жестоко конкурирующих друг с другом.

Но если мы предоставим нашим микробам возможность заимствовать чужие гены, то какой-то мутант с улучшенным геном А рано или поздно позаимствует у микроба из другого клона улучшенный ген Б (или наоборот). В результате появится микроб с обеими полезными мутациями вместе. Его-то потомки и унаследуют мир. Польза ГПГ очевидна, не правда ли? Поэтому если смотреть на проблему отцов и детей глазами эволюциониста, то она легко решается с помощью секса.

Секс делает все полезные мутации, возникшие в популяции, «общим достоянием». Поэтому скорость приспособления к меняющимся условиям у организмов, способных к сексу, должна быть выше, чем у бесполых. Эту идею первыми разработали в 1930-х годах уже упоминавшийся Герман Мёллер и другой гениальный генетик-эволюционист Рональд Фишер (1890–1962). Она так и называется – эффект Фишера – Мёллера.

Эффект Фишера – Мёллера тем сильнее, чем выше частота возникновения полезных мутаций. Эта частота, в свою очередь, зависит от условий среды. Чем хуже условия, тем чаще возникают полезные мутации, чем условия благоприятнее, тем это происходит реже. В этом нет никакой мистики, так получается автоматически. Ведь приспособленность организма и благоприятность условий – стороны одной медали. Ухудшение условий идентично снижению приспособленности. Чем ниже приспособленность (т. е. чем дальше находится организм от локального пика на ландшафте приспособленности), тем выше вероятность того, что случайная мутация окажется полезной. Из этого следует, что эффект Фишера – Мёллера должен быть сильнее в переменчивой среде, к которой организмы не успевают как следует приспособиться.

Рис.10 Эволюция. Классические идеи в свете новых открытий

Схема, показывающая, как секс может ускорять распространение полезных мутаций. При половом размножении (верхний рисунок) два новых полезных аллеля (A и B) объединяются в результате скрещивания особей, каждая из которых имеет только один из этих аллелей. При бесполом размножении (нижний рисунок) приходится дожидаться, пока обе мутации случайно возникнут у одного и того же клона.

Рассмотренные модели применимы к любым популяциям, кроме чрезвычайно больших или абстрактных «бесконечно больших» популяций, с которыми любят играть специалисты по эволюционной генетике. Дело в том, что для бесконечно больших популяций удобно выводить красивые формулы. В популяциях с ограниченной численностью секс, по-разному комбинируя полезные и вредные мутации, регулярно создает генотипы с повышенной приспособленностью, появление которых в бесполой популяции маловероятно. Что касается бесконечно больших популяций, то там все не так очевидно: требуется соблюдение ряда дополнительных условий, чтобы секс давал ощутимое преимущество. Специалисты спорят, насколько часто соблюдаются эти условия в природе. Можно поспорить и о том, часто ли в природе встречаются настолько громадные популяции, что их можно считать бесконечными без ущерба для точности моделей. Общий вывод, впрочем, от этого не меняется. Как правило, секс полезен, особенно если за него не приходится слишком дорого платить.

Секс помогает извлечь пользу из численности

Из модели Фишера – Мёллера вытекает интересное следствие: польза от секса в большой популяции может быть больше, чем в маленькой. Выше мы рассмотрели случай, когда в двух популяциях – половой и бесполой – возникло по две полезные мутации. В бесполой популяции зафиксировалась только одна из них, а вторая пала жертвой безжалостной конкуренции между клонами. В популяции организмов, способных к сексу, зафиксировались обе мутации.

Задумаемся теперь, что произойдет, если мы вдвое увеличим численность обеих популяций.

Логично допустить, что в популяции с удвоенной численностью будет возникать вдвое больше редких полезных мутаций в единицу времени. Поэтому давайте предположим, что в каждой популяции возникло уже не по две, а по четыре полезных мутации (в четырех разных генах у четырех разных особей). Какая судьба их ждет? Ответ очевиден. В половой популяции все четыре мутации объединятся в одном геноме (мы предполагаем, что эффект мутаций аддитивен, т. е. их польза складывается и они не мешают друг другу). Положительное влияние численности налицо: вдвое больше численность – вдвое больше полезных мутаций зафиксировалось.

В бесполой популяции начнется конкуренция между четырьмя клонами – потомками удачливых мутантов. Победит тот клон, чья мутация окажется самой полезной. Остальные три полезные мутации будут вытеснены. Таким образом, почти никакой пользы от удвоения численности бесполая популяция не получит. Ну разве что самую минимальную – за счет того что на этот раз зафиксируется лучшая из четырех мутаций, а не из двух[39].

Итак, сексуальная популяция с единым генофондом будет адаптироваться тем эффективнее, чем выше ее численность. Бесполая «свора конкурирующих клонов» не получает такого выигрыша от увеличения численности.

В 2002 году этот теоретически предсказанный эффект удалось подтвердить экспериментально. Ник Коулгрейв из Эдинбургского университета работал с жгутиконосцами – хламидомонадами (Chlamydomonas reinhardtii). Эти одноклеточные водоросли могут размножаться как бесполым путем (делением), так и половым, образуя гаметы, которые затем сливаются в зиготы. Половое размножение у хламидомонад можно стимулировать искусственно (поместив жгутиконосцев в воду, не содержащую соединений азота), а можно, наоборот, заблокировать – например, поместив в аквариум жгутиконосцев только одного «пола» (вообще-то у них нет самцов и самок, зато есть так называемые типы спаривания, причем скрещивание возможно лишь между представителями разных «типов», которые ничем, кроме половой избирательности, друг от друга не отличаются). Коулгрейв заставил множество больших, средних и маленьких популяций хламидомонад приспосабливаться к неблагоприятным для них условиям. При этом половина популяций размножалась как бесполым, так и половым путем, а другая половина – только бесполым.

Спустя 50 поколений у всех подопытных популяций была измерена приспособленность (скорость размножения по сравнению с исходными, предковыми жгутиконосцами). Оказалось, что все бесполые популяции приспособились к новой среде почти одинаково плохо – большие лишь ненамного лучше маленьких. Популяции, практиковавшие секс, приспособились лучше, чем бесполые. Самое главное, чем выше была численность, тем сильнее проявилось их преимущество. Маленькие популяции (состоявшие примерно из 1000 особей) приспособились к новой среде лишь на 2 % лучше, чем бесполые, средние (100 тыс. особей) – на 7 %, большие (1 млн особей) – на 13 % (Colegrave, 2002).

Таким образом, проверяемое следствие, вытекающее из модели Фишера – Мёллера, замечательно подтвердилось. Разумеется, то, что справедливо для хламидомонад, не обязательно должно быть верным для всех живых существ. Но никто и не говорит, что в жизни все просто и однозначно.

Переменчивая среда способствует половому размножению

Еще одно подтверждение эффекта Фишера – Мёллера удалось получить в опытах на коловратках (Becks, Agrawal, 2010). Коловратки класса Monogononta (однояичниковые) способны как к бесполому (партеногенетическому), так и к половому размножению[40]. При низкой плотности популяции в ней, как правило, присутствуют только самки, производящие так называемые амиктические (партеногенетические) диплоидные яйца, из которых без оплодотворения выводится следующее поколение самок. При высокой плотности часть самок начинает производить гаплоидные яйца, из которых выходят маленькие непитающиеся самцы. Они спариваются с самками, в результате чего образуются «покоящиеся» оплодотворенные яйца с плотной оболочкой. Из них снова выводятся только самки. Решение о переходе к половому размножению коловратки принимают на основе так называемого чувства кворума. Это происходит, когда концентрация веществ, выделяемых самками, превышает определенный порог. Поэтому, чтобы спровоцировать самку на половое размножение, достаточно поместить ее в воду, взятую из аквариума, где плотность популяции коловраток высока.

Рис.11 Эволюция. Классические идеи в свете новых открытий

Коловратка Brachionus calyciflorus поедает колонию нитчатых цианобактерий Anabaena. Коловратка несет на себе два крупных партеногенетических яйца.

У коловраток Brachionus варьирует склонность к тому или другому способу размножения, и эти вариации наследственные. Это значит, что выбранный коловраткой способ размножения зависит не только от среды, но и от генов: встречаются клоны самок, легко и быстро переходящие к половому размножению, тогда как другие клоны делают это менее охотно.

Эти особенности делают коловраток удобным объектом для экспериментального изучения эволюции пола. Выше мы говорили, что эффект Фишера – Мёллера лучше проявляется в переменчивой среде: в этих условиях половое размножение становится более выгодным (Pylkov et al., 1998; Lenormand, Otto, 2000; Agrawal, 2009). Суть идеи в следующем. Допустим, популяция состоит из двух частей (субпопуляций), живущих в разных условиях, причем между частями существует обмен особями (миграция). В каждой из двух субпопуляций отбор благоприятствует разным комбинациям генов (точнее, генетических вариантов – аллелей). Если особь мигрирует из одной субпопуляции в другую, некоторые ее гены окажутся в новых условиях вредными, снижающими приспособленность. Поэтому всем остальным генам данной особи будет выгодно избавиться от этого груза и найти себе более подходящую «компанию», т. е. объединиться с генами аборигенов, лучше приспособленными к местным условиям. Этого легко добиться при помощи полового размножения, но совершенно невозможно, если вы размножаетесь партеногенезом. Поэтому, если миграции происходят достаточно регулярно, любая мутация, повышающая склонность особей к половому размножению, имеет шанс распространиться в популяции и вытеснить конкурирующий аллель, снижающий частоту полового размножения.

Биологам из Канады и Германии удалось получить экспериментальное подтверждение этой идеи в ходе экспериментов с коловратками Brachionus calyciflorus. Подопытные коловратки были выведены из яиц, собранных в одной природной популяции. Ранее было показано, что в этой популяции есть наследственная изменчивость по склонности к сексу, а раз есть наследственная изменчивость, то возможна и эволюция под действием отбора.

Рис.12 Эволюция. Классические идеи в свете новых открытий

Жизненный цикл коловраток класса Monogononta. Из Becks, Agrawal, 2010.

Ученые вывели из собранных яиц 120 лабораторных популяций, изначально одинаковых по своим свойствам и уровню изменчивости. Часть популяций затем выращивали в однородных, часть – в разнородных условиях в течение 14 недель, что соответствует примерно сотне поколений. Численность каждой популяции поддерживалась на уровне около 10 тыс. особей.

Разнородные условия были смоделированы следующим образом. Популяцию делили на две части (субпопуляции). Одну часть помещали в богатую питательную среду, а другую – в бедную. Богатство среды определялось количеством одноклеточных водорослей, которыми питаются коловратки, а количество водорослей – концентрацией азота в воде. Время от времени в каждом аквариуме часть воды заменяли на свежую питательную среду, чтобы количество пищи оставалось примерно постоянным. Миграции между субпопуляциями осуществлялись путем еженедельного пересаживания части коловраток и их яиц из одного аквариума в другой. Использовали два разных уровня миграции: 1 % и 10 % особей за поколение.

В «однородных» экспериментах все делалось точно так же, за исключением того что среда в обоих аквариумах была одинаковая: либо богатая, либо бедная.

Исследователи следили за изменениями частоты полового размножения и «наследственной склонности» к нему в каждой популяции. Реальную частоту определяли по соотношению амиктических (неоплодотворенных) и покоящихся (оплодотворенных) яиц. Изменения «наследственной склонности» (частот аллелей, регулирующих склонность к половому размножению) определяли при помощи индивидуального тестирования клонов коловраток. Из каждой популяции брали по 84 самки и выводили из них небольшие партеногенетические клоны. Затем в воду, где жили эти клоны, добавляли немного воды из аквариума с высокой плотностью самок (как уже говорилось, это стандартный способ сексуальной стимуляции коловраток) и подсчитывали число клонов, перешедших к половому размножению.

В начале эксперимента подопытные популяции продемонстрировали высокую готовность к сексу: более 80 % клонов переходили к половому размножению при стимуляции. Через шесть недель в популяциях, живших в однообразной среде, этот показатель упал до 60 %, еще через шесть недель – до 40 %. Таким образом, в однородной среде коловратки эволюционировали в сторону отказа от секса. Этот процесс шел с одинаковой скоростью как в бедной, так и в богатой среде.

В популяциях, живших в разнообразной среде, через 6 и 12 недель после начала эксперимента наблюдался более высокий уровень полового размножения. Он тоже снизился по сравнению с исходным, но совсем ненамного. По истечении 12 недель 70 % клонов в этих популяциях по-прежнему были готовы перейти к половому размножению в ответ на соответствующий стимул. Уровень миграции (1 % или 10 % мигрантов на поколение) не повлиял на результаты эксперимента.

Почему частота полового размножения все-таки снизилась даже в этих популяциях? Возможно, это объясняется тем, что природная популяция коловраток, из которой были выведены лабораторные, живет в еще более разнородных условиях, чем те, что были созданы в эксперименте.

По прошествии 14 недель авторы объединили все экспериментальные популяции, хорошенько перемешали и снова разделили на 120 изолированных линий. Склонность к сексу в этих линиях изначально была около 45–50 %. Их опять поместили в однородные или разнородные условия. В первом случае частота полового размножения продолжала снижаться, во втором – начала расти. Таким образом, содержание в разнородных условиях может не только замедлять снижение частоты полового размножения, но и приводить к ее росту.

По-видимому, для таких разнородных условий, которые были созданы в эксперименте, устойчивая или равновесная частота полового размножения находится где-то между 55 и 70 %. Если частота оказывается ниже равновесного уровня, «гены полового размножения» получают селективное преимущество над «генами асексуальности», и наоборот. В однородных условиях равновесный уровень составляет не более 25–30 % (до этой отметки упала склонность к сексу у подопытных популяций к концу 20-й недели), а может быть и вовсе равен нулю. Исследователи допускают, что если бы они продолжили эксперимент, то, наверное, смогли бы вывести коловраток, полностью утративших интерес к сексу, подобно тому как это произошло с бделлоидными коловратками.

Полученные результаты согласуются с идеей о том, что половое размножение помогает разбивать комбинации генов, подходящие для одних условий, но невыгодные в других. Это подтверждается, в частности, тем, что коловратки, жившие в течение 15 недель в однородной (бедной или богатой) среде, действительно адаптировались к этим условиям. Адаптированность оценивали по среднему числу потомков, производимых одной самкой в течение жизни. Коловратки, приспособившиеся к богатой среде, производят в ней в среднем около девяти потомков за жизнь, но, если их пересадить в бедную среду, их репродуктивный успех падает до пяти потомков. Самки, адаптировавшиеся к бедной среде, производят около шести потомков, а если их пересадить в богатую среду, их плодовитость падает до 5,5. Следовательно, разные условия действительно способствовали отбору разных аллелей.

По-видимому, разнообразие условий среды является важным фактором, не позволяющим большинству организмов отказаться от секса.

Дрожжи занимаются сексом не от хорошей жизни

Хотя вопрос о том, почему большинство живых существ предпочитают сложный процесс полового размножения простому бесполому, продолжает оставаться любимой головоломкой эволюционистов-теоретиков, в общем виде эта задача была решена, по-видимому, еще Августом Вейсманом в конце XIX века (Weismann, 1889). Вейсман предположил, что секс увеличивает разнообразие потомства, тем самым предоставляя материал для отбора и повышая его эффективность, что позволяет организмам быстрее адаптироваться.

Сегодня, по прошествии века с четвертью, можно сказать, что гипотеза Вейсмана при всей ее расплывчатости и неконкретности в целом подтвердилась. Правда, попытки ее конкретизировать породили новые проблемы. Появилось несколько конкурирующих теорий, которые по-разному оценивают влияние полового размножения на эффективность разных форм отбора. Одни модели, как мы уже знаем, видят в сексе прежде всего способ ускоренного накопления полезных мутаций (повышение эффективности положительного отбора). Другие подчеркивают роль секса в отбраковке вредных мутаций (отрицательный отбор). Поставить эксперимент, который позволил бы разделить эти два эффекта, трудно, потому что мы не умеем напрямую регулировать соотношение полезных и вредных мутаций у подопытных организмов. Можно, однако, регулировать его косвенно, меняя степень благоприятности среды. «Благоприятность» означает, что организмы хорошо приспособлены именно к такой среде, многие их гены подогнаны к ней оптимальным образом. Поэтому в идеальных условиях вероятность появления полезных мутаций минимальна. В неблагоприятной среде частота полезных мутаций должна быть выше: случайные перемены с большей вероятностью пойдут на пользу организму, если ему живется плохо. Что касается вредных мутаций, то они в обоих случаях должны возникать намного чаще, чем полезные. Однако их средняя «вредность», скорее всего, будет меньше, если условия благоприятны. Дело в том, что живые организмы, как правило, имеют «запас прочности». Например, у дрожжей из бооо генов только 1000 абсолютно необходимы для выживания в идеальных условиях. Все остальные нужны для борьбы с разного рода трудностями, т. е. для жизни в неоптимальной среде (Hillenmeyer et al., 2008). Ясно, что мутации, нарушающие работу этих «дополнительных» генов, будут в среднем более вредными в стрессовых условиях, чем в оптимальных.

Все эти соображения были учтены Джереми Греем и Мэттью Годдардом из Оклендского университета (Новая Зеландия) при планировании эволюционного эксперимента, в ходе которого они попытались сравнить влияние секса на эффективность положительного и отрицательного (стабилизирующего) отбора (Gray, Goddard, 2012).

В эксперименте использовались линии дрожжей, различающиеся по скорости мутирования и по способности к сексу. Наряду с обычными, «дикими» дрожжами, у которых средняя частота мутирования составляет 6,9108 мутаций на пару нуклеотидов за поколение (в геноме дрожжей 1,2107 пар нуклеотидов), использовались дрожжи с удаленным геном MSH2. Этот ген участвует в исправлении ошибок в ДНК, поэтому его удаление привело к десятикратному ускорению мутагенеза – до 7,3107 мутаций на пару нуклеотидов за поколение.

Рис.13 Эволюция. Классические идеи в свете новых открытий

Жизненный цикл дрожжей Saccharomyces cerevisae.

Кроме того, чтобы лишить часть подопытных линий способности к сексу, авторы удалили у них два гена (SPO11 и SPO13), необходимых для мейоза. В результате получились «бесполые» дрожжи, не отличающиеся от обычных ни по скорости размножения, ни по другим существенным характеристикам. Дрожжи размножаются бесполым путем (почкованием), пока им хватает пищи. Голодание стимулирует мейоз, в результате которого диплоидная клетка превращается в четыре гаплоидные споры. Гаплоидные клетки подразделяются на два пола (a и ). Разнополые клетки сливаются попарно, образуя зиготу, после чего цикл повторяется. Генно-модифицированные бесполые дрожжи при голодании тоже пытаются превратиться в споры, но вместо четырех гаплоидных спор у них получаются две диплоидные, вполне жизнеспособные и не нуждающиеся в слиянии с кем бы то ни было.

Всего, таким образом, авторы получили дрожжевые клетки четырех типов:

1) способные к сексу, с низкой скоростью мутирования;

2) способные к сексу, с высокой скоростью мутирования;

3) бесполые, с низкой скоростью мутирования;

4) бесполые, с высокой скоростью мутирования.

Половину подопытных популяций выращивали в благоприятных условиях (при температуре 30 °C в несоленой среде), остальные поместили в стрессовые условия (37 °C, 1,17 % NaCl). В общей сложности в эксперименте приняли участие 24 подопытные популяции: по три популяции каждого из четырех типов эволюционировали в благоприятных и столько же – в стрессовых условиях. Эксперимент продолжался в течение 300 бесполых поколений, между которыми были равномерно распределены 11 раундов полового размножения. Все популяции одновременно подвергались голоданию, что стимулировало образование гаплоидных спор у обычных дрожжей и диплоидных – у бесполых.

Авторы следили за тем, как меняется приспособленность дрожжей по сравнению с предковым штаммом. Для этого подопытные дрожи смешивали с предками в пропорции 1:1 и измеряли относительную скорость размножения эволюционировавшей популяции.

В благоприятных условиях ни способность к половому размножению, ни скорость мутагенеза не повлияли на ход эволюции. Приспособленность дрожжей всех четырех типов лишь слабо колебалась и спустя 300 поколений осталась на исходном уровне.

Это значит, что полезные мутации, по-видимому, почти не возникали (как и следовало ожидать в благоприятных условиях), и положительному отбору нечего было поддерживать. Результат соответствует общепринятому мнению, что в оптимальных условиях отрицательный отбор преобладает над положительным. Скорость мутирования, даже искусственно повышенная, вероятно, оказалась все же недостаточной, чтобы вызвать генетическое вырождение за 300 поколений.

В неблагоприятных условиях картина получилась другая. Наблюдался рост приспособленности у дрожжей, способных к сексу, – как у обычных, так и у «мутаторов». У бесполых дрожжей с низкой скоростью мутирования рост приспособленности был выражен намного слабее. Что же касается бесполых линий с повышенной скоростью мутирования, то их приспособленность снижалась: началось генетическое вырождение.

Рост приспособленности свидетельствует о накоплении полезных мутаций. Очевидно, в неблагоприятных условиях случайные мутации действительно оказываются полезными чаще, чем в оптимальных. Эксперимент подтвердил, что половое размножение повышает эффективность положительного отбора, помогая накапливать полезные мутации. Это видно из того, что обычные дрожжи приспособились к стрессовым условиям лучше, чем бесполые.

То, что в неблагоприятных условиях у бесполых дрожжей-мутаторов началось вырождение, говорит о том, что в такой ситуации отрицательный отбор уже не мог справиться с отбраковкой вредных мутаций, и они начали накапливаться. Тем временем точно такие же дрожжи, но только способные к сексу, в таких же условиях быстро повышали свою приспособленность. Из этого следует, что в неблагоприятных условиях важную роль играют обе формы отбора, причем половое размножение повышает эффективность обеих.

Микробам – горизонтальный перенос, высшим организмам – половое размножение

Рассмотренные примеры говорят о пользе скрещивания и перемешивания генов при половом размножении. Но у бактерий и архей вместо настоящего амфимиксиса работает горизонтальный перенос. Будет ли секс и в этом случае выполнять ту же функцию – быстро приспосабливать организмы к изменившимся условиям? Если это так, то ГПГ у микробов должен быть очень широко распространен и практиковаться не только между популяциями, но главным образом между особями одной популяции. Полезный аллель, который легко позаимствовать, скорее всего, окажется у близкого собрата.

Традиционно преобладала точка зрения, что отбор у бактерий все-таки в основном клональный, действующий на уровне целых геномов. Это значит, что ГПГ не играет существенной роли в повседневных «попытках» прокариот приспособиться к изменчивой среде. Эта гипотеза теперь, при нынешнем развитии биотехнологий, легко проверяема. Такой труд взяли на себя биологи из Массачусетского технологического института: они показали, что традиционная точка зрения неверна или верна только отчасти и что в своей повседневной переменчивой жизни микробы то и дело заимствуют гены у своих ближайших родичей – других микробов той же популяции (Shapiro et al., 2012).

Биологи работали с двумя популяциями морских планктонных бактерий Vibrio cyclitrophicus. Эти популяции, обозначаемые буквами L и S, находятся в процессе адаптации к разным экологическим нишам: часть бактерий приурочена к крупным (L), а другая – к мелким (S) частицам, отфильтрованным из морской воды. Результаты генетического анализа говорят о том, что разошлись они недавно (Hunt et al., 2008). По-видимому, популяции L и S приспосабливаются к жизни на разных представителях зоо– или фитопланктона[41].

Авторы решили выяснить, какой из двух процессов преобладает на начальных этапах экологической дифференциации – отбор отдельных генов с удачными мутациями, которые распространяются за счет ГПГ, или клональный отбор, работающий с целыми геномами.

Различить эти две ситуации можно, сравнив внутри– и межпопуляционный генетический полиморфизм (вариабельность) изучаемых популяций. Если преобладает отбор на уровне генов, две популяции должны четко отличаться друг от друга по небольшому числу генов – тех, от которых зависят экологические свойства популяций. При этом различающиеся участки генома должны иметь пониженный уровень внутрипопуляционного полиморфизма хотя бы в одной из двух популяций. Ведь на каждый такой участок действовал отбор, который поддерживал какой-то один вариант этого участка, вытесняя из генофонда другие его варианты (см. раздел «Следы естественного отбора» в главе 2). Напротив, те участки генома, которые у двух популяций сходны, должны быть более полиморфными в пределах каждой популяции, причем наборы вариантов (аллелей) могут быть одинаковыми в двух популяциях. Ведь отбор, связанный с приспособлением к новой нише, на них не действовал и они могли сохранить исходный полиморфизм, накопленный предками.

Если же в процессе расхождения популяций преобладал клональный отбор, то и уровень полиморфизма, и генетические различия между популяциями должны быть распределены по геному более равномерно.

Авторы отсеквенировали геномы 13 бактерий из популяции L и семи особей из популяции S. Сравнение геномов подтвердило первую версию: в недавней эволюции двух бактериальных популяций явно преобладал отбор на уровне отдельных генов. Следовательно, имел место интенсивный ГПГ между родственными микробами. Вот некоторые факты, на которых основан этот вывод.

Обнаружено 725 нуклеотидных позиций, в которых у микробов L всегда стоит какой-то один нуклеотид, а у микробов S – другой. Эти 725 позиций назвали «экоснипами» (ecoSNPs[42]), поскольку именно они, скорее всего, отвечают за приспособление к различающимся условиям. Экоснипы не рассеяны по геному хаотически, а сгруппированы в 11 кластеров. Внутри каждого кластера хотя бы у одной из двух популяций наблюдается пониженный уровень полиморфизма, что свидетельствует о недавнем действии положительного отбора.

Страницы: «« 123 »»

Читать бесплатно другие книги:

Разве это не чудо – получить в наследство старинное поместье? Но только приехав в особняк, Макс поня...
Сотрудница музея Анна Славина обнаруживает, что прибывшее из Лувра на выставку колье «Рубиновые слез...
Жил-был обычный (а может, и не совсем обычный) парень. Жил рядом с нами, может, кто-то даже сейчас c...
Новый роман классика российской кинодраматургии Виктора Мережко продолжает знакомить нас с историей ...
Евгений Всеволодович Головин – поэт и философ, литератор и музыкант; филолог, теолог, мифолог; мисти...
Впервые на русском – дебютная книга Энтони Дорра, автора поразительного международного бестселлера «...