(Не)совершенная случайность. Как случай управляет нашей жизнью - Млодинов Леонард

Джероламо подцепил бубонную, самую распространенную, названную так по бубонам – болезненным, размером с яйцо воспалениям в лимфатических узлах – отличительным симптомам болезни. Как только бубоны открывались, больному оставалось жить с неделю, не больше.

«Черная смерть» впервые проникла в Европу в 1347 г. через залив в Мессине на северо-востоке Сицилии – ее принесла возвращавшаяся с Востока генуэзская флотилия[62 - Robert S. Gottfried, The Black Death: Natural and Human Disaster in Medieval Europe (New York: Free Press, 1985).]. Суда тут же поставили на карантин, и вся команда умерла прямо на борту. Однако крысы с кораблей выжили, они спешно переправились на берег, неся на себе и бактерии, и блох-разносчиков. В результате разразившейся эпидемии за два месяца вымерло полгорода, а в конечном счете – от 25 % до 50 % населения Европы. Впоследствии эпидемии из столетия в столетие возвращались, унося жизни европейцев. Для Италии 1501 г. оказался особенно страшным. Кормилица Джероламо и его братья умерли. Он же, счастливчик, отделался лишь физическими изъянами: бородавками на носу, лбу, щеках и подбородке. На роду ему написано было дожить до глубокой старости – семидесяти пяти лет. Юные же годы Джероламо не были спокойными, его часто поколачивали.

Отец Джероламо наладил ловкий бизнес. Некогда он состоял в приятельских отношениях с Леонардо да Винчи, а по роду деятельности занимался геометрией, которая и в те времена не приносила больших денег. Фачио иной раз нечем было заплатить за жилье, и он открыл контору, оказывая людям знатного происхождения услуги в области права и медицины. Контора его стала процветать, чему способствовало и то, что Фачио объявил себя наследником брата Джофредо Кастильони из Милана, более известного как папа Целестин IV. Когда Джероламо исполнилось пять лет, отец в некотором смысле начал приобщать его к своему делу. А именно: привязывал к спине сына короб, совал туда тома по юриспруденции и медицине и таскал мальчишку на встречи со своими покровителями по всему городу. Позднее Джероламо писал, что «время от времени отец приказывал мне остановиться посреди улицы, доставал из короба фолиант и, используя мою голову в качестве подставки, читал целые отрывки, пиная меня, если я уставал и начинал переминаться с ноги на ногу под такой тяжестью[63 - Gerolamo Cardano, quoted in Wykes, Doctor Cardano, p. 18.]».

В 1516 г. Джероламо решил податься в медицину. Он объявил, что собирается покинуть семью и отправиться на учебу в Павию. Фачио, конечно же, хотел, чтобы сын изучал право – в таком случае ему ежегодно выплачивали бы стипендию в 100 крон. После жуткого семейного скандала отец сдался, но по-прежнему не решен был вопрос: на что Джероламо будет жить в Павии без стипендии? Джероламо начал копить деньги, зарабатывая на чтении гороскопов, частных уроках по геометрии, алхимии, астрономии. Кроме того, Джероламо заметил, что в азартных играх ему сопутствует удача, к тому же игра приносила гораздо больше, чем любые другие занятия.

Для тех, кто во времена Кардано испытывал страсть к азартным играм, везде был Лас-Вегас. Повсюду заключали пари, будь то карты, кости, нарды, даже шахматы. Кардано все игры делил на два типа: те, которые требовали применения некой стратеги или умения, и те, победа в которых зависела от чистой случайности. Возьмись Кардано за шахматы, он бы рисковал тем, что его мог обыграть какой-нибудь Бобби Фишер тех времен. Когда же он ставил на парочку кубиков, шансы его были такими же, как и у остальных. Но даже в этих играх Джероламо добился преимущества – он лучше других разобрался в вероятности выигрыша в разных ситуациях. И вот, вступая в мир, где заключают пари, Джероламо стал играть в игры, выигрыш в которых зависел от случая. Прошло немного времени, и он скопил на учебу 1 тыс. крон – в десять раз больше той стипендии, которую хотел для него отец. В 1520 г. Джероламо записался студентом в университет в Павии. И вскоре приступил к работе над теорией азартных игр.








Кардано жил в XVI в., и у него было преимущество – он понимал многое из того, что древние греки в силу своей древности не знали, как не знали римляне, и в чем индийцы делали лишь первые шаги, пользуясь арифметикой как эффективным инструментом. Именно последние развили позиционную систему счисления по целочисленному основанию 10, которая стала общепринятой около 700 г. н. э.[64 - Kline, Mathematical Thought, pp. 184–85, 259–60.] Они же совершили большой прорыв в арифметике дробей, что просто неоценимо для анализа вероятностей, поскольку вероятность того, что событие произойдет, всегда меньше единицы. От индийцев эти знания переняли арабы, а уже от арабов они перешли к европейцам. Первые сокращения – p для «плюса» и m для «минуса» – начали использовать с XV в. Символы «+» и «—» ввели примерно в то же время германцы, но только для того, чтобы обозначать избыточность и недостаточность товаров. Так что легко представить, с какими трудностями пришлось столкнуться Кардано; к тому же и знак равенства еще не существовал, его изобрел в 1557 г. Роберт Рекорд из Оксфорда и Кембриджа. Роберт Рекорд, вдохновленный геометрией, заметил: ничто не выражает идею равенства так полно, как две параллельные прямые; таким образом, было решено использовать их в качестве обозначения равенства. А символ «x», то есть умножение, изобретение которого приписывают англиканскому священнику, появился только в XVII в.

В своем «Трактате об азартных играх» Кардано касается и карточных игр, и костей, и нард, и даже игры в «бабки». Трактат, конечно, не совершенен. Он отражает характер самого Кардано, его безумные идеи, необузданный нрав, ту страсть, с которой он брался за каждое свое предприятие, а зачастую и перипетии его жизни в те непростые времена. В «Трактате» рассматриваются только процессы – подбрасывание кости или манипуляции с игральными картами, – в которых один исход так же вероятен, как и другой. И кое в чем Кардано заблуждается. Но все же «Трактат об азартных играх» – это поворотный момент, первый успех в исканиях человечества, пытающегося понять природу неопределенности. Метод, с помощью которого Кардано энергично взялся за решение вопросов вероятности, удивительно действенный и в то же время простой.

Не все главы «Трактата» Кардано посвящены техническим моментам. К примеру, глава 26 называется «В самом ли деле те, кто способен научить, так же хорошо играют сами?» (Кардано делает вывод: «Выходит, одно дело знать, и совсем другое – применить на практике».) Глава 29 называется «О характерах игроков». («Есть и такие, которые своим многословием затуманивают ум и себе, и другим».) Это уже больше похоже на «Дорогую Эбби»[65 - «Дорогая Эбби» – название известной колонки советов, начатой в 1956 г. Полин Филлипс, писавшей под псевдонимом Абигайль ван Бюрен.], нежели на «Спросите Мэрилин». Но есть и глава 14 «Об общих точках» (речь идет о вероятностях). И в ней Кардано выводит, по его словам, «общее правило» – наш закон пространства элементарных событий.

Термин «пространство элементарных событий» подразумевает идею о том, что все возможные исходы случайного процесса можно представить в виде точек в пространстве. В простых случаях это пространство заключает в себе всего несколько точек, однако в сложных ситуациях может представлять собой их непрерывное множество, совсем как то пространство, в котором мы живем. Кардано, конечно же, не употреблял термина «пространство»: понятие о том, что набор чисел может формировать пространство, появилось лишь столетие спустя, у Декарта, который изобрел систему координат и унифицировал символику алгебры и геометрии.

На современном языке правило Кардано звучит следующим образом: «Предположим, случайный процесс имеет множество одинаково вероятных исходов: некоторые из них благоприятны (то есть ведут к выигрышу), некоторые неблагоприятны (то есть проигрышные). Вероятность благоприятного исхода равна доле благоприятных исходов. Множество всех возможных исходов образует пространство элементарных событий». Другими словами, брошенный кубик опускается на любую из шести своих сторон, и эти шесть исходов формируют пространство элементарных событий. Если вы ставите пари на, скажем, два из них, ваши шансы выиграть равны 2 из 6.

Скажем пару слов о предположении, будто все исходы в одинаковой степени вероятны. Очевидно, что это не всегда так. Пространство элементарных событий в плане веса Опры Уинфри в зрелом возрасте вмещает в себя (так уж сложилось исторически) от 66 до 107 кг, и с течением времени не все весовые промежутки оказались в одинаковой степени вероятными[66 - “Oprah’s New Shape: How She Got It”, O, the Oprah Magazine, January 2003.]. То осложнение, что разные возможности имеют разные вероятности, можно учесть, соотнеся соответствующие шансы с каждым возможным исходом, то есть произвести точный подсчет. Однако пока что рассмотрим примеры, в которых все исходы в одинаковой степени вероятны – именно их и анализировал в своей работе Кардано.

Эффективность правила Кардано неразрывно связана с некоторыми тонкостями. Одна из них заключается в значении термина «исходы». Уже в XVIII в. известный французский математик Жан Лерон Д’Аламбер, автор ряда работ в области теории вероятностей, допустил неверное употребление этого понятия, когда анализировал процесс подбрасывания двух монет[67 - Lorraine J. Daston, Classical Probability in the Enlightenment (Princeton, N.J.: Princeton University Press, 1998), p. 97.]. Число орлов, которые выпадают при этом, может равняться 0, 1 или 2. Поскольку получается три исхода, Д’Аламбер решил, что шансы каждого равны 1 из 3. Однако он ошибся.

Одним из серьезнейших недостатков работы Кардано было то, что он не предпринял систематического анализа разных способов, путем которых ряд исходов, таких как подбрасывание монет, могут произойти. Как мы увидим в следующей главе, этого анализа не сделал никто вплоть до следующего столетия. В то время как такие события, как подбрасывания двух монет, не отличаются сложностью и к ним вполне применимы методы Кардано. Ключевым моментом является понимание того, что возможные исходы подбрасывания монет – это данные, описывающие то, как монеты падают, а не общее количество орлов, вычисленное исходя из этих данных, как заключает Д’Аламбер. Другими словами, нам следует рассматривать не 0, 1 или 2 орла в качестве возможных исходов, а скорее последовательности: (орел, орел), (орел, решка), (решка, орел) и (решка, решка). Эти 4 возможных комбинации и составляют пространство элементарных событий.

Далее, если следовать трактату Кардано, следует рассортировать исходы, отметив число орлов, полученное в каждом исходе. Только 1 из 4 исходов – (орел, орел) – дает 2 орла. Таким образом, только исход (решка, решка) дает 0 орлов. Если нам нужен 1 орел, то 2 из всех исходов будут благоприятными: (орел, решка) и (решка, орел). Итак, метод Кардано доказывает ошибочность утверждений Д’Аламбера: шансы равны 25 % для 0 или 2 орлов, но 50 % для 1 орла. Поставь Кардано свои наличные на 1 орла как 2 к 1, он бы проиграл только в половине случаев, но утроил бы свою сумму в другой половине. Неплохая возможность для парня того времени, пытающегося наскрести на учебу, впрочем, как и в наше время, если бы только представилась такая возможность.

Подобная задача часто встречается в рамках курса по элементарной вероятности, и речь в ней о двух дочерях, причем задача похожа на ту, которую я уже упоминал в связи с колонкой «Спросите Мэрилин». Предположим, будущая мать носит близнецов и хочет знать, какова вероятность того, что родятся две девочки, мальчик и девочка и так далее. В таком случае пространство элементарных событий состоит из всех возможных комбинаций полов детей согласно очередности их рождения: (девочка, девочка), (девочка, мальчик), (мальчик, девочка) и (мальчик, мальчик). Все то же самое, как и в случае с задачей о подбрасывании монет, только названия меняются: вместо орла у нас «девочка», вместо решки «мальчик». У математиков есть занятное название для ситуации, в которой одна задача является по сути замаскированной другой задачей – изоморфизм. Когда вы наталкиваетесь на случай изоморфизма, жить сразу становится проще. В данном случае подразумевается, что мы можем высчитать вероятность рождения двух девочек точно так же, как мы высчитали вероятность того, что обе монеты упадут орлами. Так что без всякого там предварительного анализа можно дать ответ: 25 %. И уже потом ответить на тот вопрос, который был напечатан в колонке Мэрилин: вероятность того, что хотя бы один из младенцев окажется девочкой, равна вероятности того, что оба ребенка родятся девочками плюс к этому вероятности того, что лишь один ребенок окажется девочкой. То есть, 25 % плюс 50 %. Выходит 75 %.

В задаче о двух дочерях обычно фигурирует еще один вопрос: какова вероятность того, что оба ребенка окажутся девочками, при условии, что про одного ребенка уже точно известно – это девочка? Кое-кто станет рассуждать таким образом: поскольку уже дано, что один ребенок – девочка, следует рассматривать лишь другого ребенка. Вероятность того, что этот другой ребенок окажется девочкой, равна 50 %, так что вероятность появления на свет двух девочек равна 50 %.

Что неверно.